Respir Physiol Neurobiol
December 2014
Blast overpressure (OB) injury in rodents has been employed for modeling the traumatic brain injury (TBI) induced by an improvised explosive device (IED) in military service personnel. IED's can cause respiratory arrest if directed at the thorax due to the fluid-tissue interface of the lungs but it is unclear what respiratory changes occur in a head-directed OB injury. The diaphragm is the primary muscle of inspiration and electromyographic (EMG) recordings from this muscle are used for recording breathing in anesthetized and conscious rats.
View Article and Find Full Text PDFContext: New biomarkers are needed in acetaminophen (APAP) hepatotoxicity. Plasma argininosuccinate synthetase (ASS) is a promising candidate.
Objective: Characterize ASS in APAP hepatotoxicity.
Severe blast exposures are frequently complicated with fatal intracranial hemorrhages. However, many more sustain low level blasts without tissue damage detectable by brain imaging. To investigate effects of nonlethal blast on thrombin-related biomarkers, rats were subjected to two different types of head-directed blast: 1) moderate "composite" blast with strong head acceleration or 2) moderate primary blast, without head acceleration.
View Article and Find Full Text PDFLiver and kidney damage associated with polytrauma, endotoxic shock/sepsis, and organ transplantation, are among the leading causes of the multiple organ failure. Development of novel sensitive biomarkers that detect early stages of liver and kidney injury is vital for the effective diagnostics and treatment of these life-threatening conditions. Previously, we identified several hepatic proteins, including Argininosuccinate Synthase (ASS) and sulfotransferases which were degraded in the liver and rapidly released into circulation during Ischemia/Reperfusion (I/R) injury.
View Article and Find Full Text PDFA number of experimental models of blast brain injury have been implemented in rodents and larger animals. However, the variety of blast sources and the complexity of blast wave biophysics have made data on injury mechanisms and biomarkers difficult to analyze and compare. Recently, we showed the importance of rat position toward blast generated by an external shock tube.
View Article and Find Full Text PDFLipopolysaccharide (LPS), a structural component of Gram-negative bacteria, is implicated in the pathogenesis of endotoxemia/sepsis and multi-organ injury, including liver damage. We have shown that argininosuccinate synthase (ASS), a hepatic enzyme of the urea cycle, accumulates in circulation within 1h after treatment with both LPS alone and hepatotoxic combination of LPS and D-Galactosamine. These findings indicate ASS as a sensitive biomarker of liver responses to bacterial endotoxin.
View Article and Find Full Text PDFNeuronal cell death after traumatic brain injury, Alzheimer's disease and ischemic stroke may in part be mediated through endoplasmic reticulum (ER) stress and unfolded protein response (UPR). UPR results in induction of molecular chaperone GRP78 and the ER-resident caspase-12, whose activation has been proposed to be mediated by calpain and caspase processing, although their relative contribution remains unclear. In this study we induced ER stress with thapsigargin (TG), and determined the activation profile of calpain-2, caspase-3, caspase-7, and caspase-12 by analyses of protein levels, corresponding substrates and breakdown products (BDP).
View Article and Find Full Text PDFObjectives: Existing experimental approaches for studies of blast impact in small animals are insufficient and lacking consistency. Here, we present a comprehensive model, with repeatable blast signatures of controlled duration, peak pressure, and transmitted impulse, accurately reproducing blast impact in laboratory animals.
Materials: Rat survival, brain pathomorphology, and levels of putative biomarkers of brain injury glial fibrillary acid protein (GFAP), neuron-specific enolase, and ubiquitin C-terminal hydrolase (UCH)-L1 were examined in brain, cerebrospinal fluid (CSF), and blood after 10 msec of 358 kPa peak overpressure blast exposure.
The nature of warfare in the 21st century has led to a significant increase in primary blast or over-pressurization injuries to the whole body and head, which manifest as a complex of neuro-somatic damage, including traumatic brain injury (TBI). Identifying relevant pathogenic pathways in reproducible experimental models of primary blast wave exposure is therefore vital to the development of biomarkers for diagnostics of blast brain injury. Comparative analysis of mechanisms and putative biomarkers of blast brain injury is complicated by a deficiency of experimental studies.
View Article and Find Full Text PDFDNA fragmentation factors (DFF) form protein complexes consisting of nuclease DFF40/CAD and inhibitory chaperon DFF45/ICAD. Although activated caspase-3 has been shown to cleave DFF complexes with the release of active DFF40 and DNA fragmentation, the organ-specific mechanisms of DFF turnover during liver injury accompanied by massive apoptosis are unclear. In this study, we investigated hepatic profile of DFF40-immunopositive proteins in two models of liver injury in rats: acute ischemia/reperfusion (I/R) and chronic alcohol administration.
View Article and Find Full Text PDFSurvivin attenuates apoptosis by inhibiting cleavage of some cell proteins by activated caspase-3. We recently discovered strong up-regulation of survivin, primarily in astrocytes and a sub-set of neurons, after traumatic brain injury (TBI) in rats. In this study we characterized co-expression of survivin with activated caspase-3 and downstream DNA fragmentation (TUNEL) in astrocytes and neurons after TBI.
View Article and Find Full Text PDFNeural stem/progenitor cells are clonogenic in vitro and produce neurospheres in serum-free medium containing epidermal growth factor (EGF) and fibroblast growth factor (FGF2). Here, we demonstrate that lysophosphatidic acid (LPA) instigated the clonal generation of neurospheres from dissociated mouse postnatal forebrain in the absence of EGF and FGF2. LPA induced proliferation of cells which co-expressed Sca-1 antigen and AC133, markers of primitive hematopoietic and neural stem/progenitor cells.
View Article and Find Full Text PDFIn this study, we examined the expression and cellular localization of survivin and proliferating cell nuclear antigen (PCNA) after controlled cortical impact traumatic brain injury (TBI) in rats. There was a remarkable and sustained induction of survivin mRNA and protein in the ipsilateral cortex and hippocampus of rats after TBI, peaking at five days post injury. In contrast, both survivin mRNA and protein were virtually undetectable in craniotomy control animals.
View Article and Find Full Text PDFGrowth factor lysophosphatidic acid (LPA) regulates cell proliferation and differentiation and increases motility and survival in several cell types, mostly via G-protein-coupled receptors encoded by endothelial differentiation genes (EDG). We show herein that hepatic oval (stem) cell proliferation, induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) in a mouse model of chronic liver injury, was associated with the expression of LPA1, LPA2, and LPA3 receptor subtypes; only LPA1 receptor protein was detectable in normal liver by western blot. In the injured liver, enhanced LPA1 receptor was identified predominantly in oval cells along the portal tract, proliferating ductular epithelial cells, and small cells, which were located in the nearby parenchyma and formed clusters.
View Article and Find Full Text PDFThe biological roles of phospholipid growth factors lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) have been broadly investigated. The cellular effects of LPA and S1P are mediated predominantly via endothelial differentiation gene (EDG) receptors. Yet, the biological significance of LPA, S1P and their EDG receptors in cells of the liver remains unclear.
View Article and Find Full Text PDF