Publications by authors named "Stanislav I Fadeev"

Earlier studies aimed at investigating the metabolism of endogenous nucleoside triphosphates in synchronous cultures of cells revealed an auto-oscillatory mode of functioning of the pyrimidine and purine nucleotide biosynthesis system, which the authors associated with the dynamics of cell division. Theoretically, this system has an intrinsic oscillatory potential, since the dynamics of its functioning are controlled through feedback mechanisms. The question of whether the nucleotide biosynthesis system has its own oscillatory circuit is still open.

View Article and Find Full Text PDF

Multiple experimental data demonstrated that the core gene network orchestrating self-renewal and differentiation of mouse embryonic stem cells involves activity of Oct4, Sox2 and Nanog genes by means of a number of positive feedback loops among them. However, recent studies indicated that the architecture of the core gene network should also incorporate negative Nanog autoregulation and might not include positive feedbacks from Nanog to Oct4 and Sox2. Thorough parametric analysis of the mathematical model based on this revisited core regulatory circuit identified that there are substantial changes in model dynamics occurred depending on the strength of Oct4 and Sox2 activation and molecular complexity of Nanog autorepression.

View Article and Find Full Text PDF

Today there are examples that prove the existence of chaotic dynamics at all levels of organization of living systems, except intracellular, although such a possibility has been theoretically predicted. The lack of experimental evidence of chaos generation at the intracellular level in vivo may indicate that during evolution the cell got rid of chaos. This work allows the hypothesis that one of the possible mechanisms for avoiding chaos in gene networks can be a negative evolutionary selection, which prevents fixation or realization of regulatory circuits, creating too mild, from the biological point of view, conditions for the emergence of chaos.

View Article and Find Full Text PDF

Any vital activities of the cell are based on the ribosomes, which not only provide the basic machinery for the synthesis of all proteins necessary for cell functioning during growth and division, but for biogenesis itself. From this point of view, ribosomes are self-replicating and autocatalytic structures. In current work we present an elementary model in which the autocatalytic synthesis of ribosomal RNA and proteins, as well as enzymes ensuring their degradation are described with two monotonically increasing functions.

View Article and Find Full Text PDF

Alternative splicing is a widespread phenomenon in higher eukaryotes, where it serves as a mechanism to increase the functional diversity of proteins. This phenomenon has been described for different classes of proteins, including transcription regulatory proteins. We demonstrated that in the simplest genetic system model the formation of the alternatively spliced isoforms with opposite functions (activators and repressors) could be a cause of transition to chaotic dynamics.

View Article and Find Full Text PDF

The methods for constructing "chaotic" nonlinear systems of differential equations modeling gene networks of arbitrary structure and dimensionality with various types of symmetry are considered. It has been shown that an increase in modality of the functions describing the control of gene expression efficiency allows for a decrease in the dimensionality of these systems with retention of their chaotic dynamics. Three-dimensional "chaotic" cyclic systems are considered.

View Article and Find Full Text PDF

Background: In plant roots, auxin is critical for patterning and morphogenesis. It regulates cell elongation and division, the development and maintenance of root apical meristems, and other processes. In Arabidopsis, auxin distribution along the central root axis has several maxima: in the root tip, in the basal meristem and at the shoot/root junction.

View Article and Find Full Text PDF

The model for reception of the concentration gradient of the Hedgehog morphogen has been developed. The mechanism of co-operation of the proteins Patched, Smoothened, and Hedgehog is theoretically analyzed in terms of different versions of interactions within this group of proteins. The parametric stability of the modeled system is considered.

View Article and Find Full Text PDF