In this paper, atmospheric optical turbulence strength is estimated for realistic airborne environments using a modified phase-variance approach, as well as a modified slope-discrepancy approach. Realistic airborne environments are generated using wave-optics simulations of a plane wave propagating through increasing strengths of homogeneous atmospheric optical turbulence, both with and without aero-optical contamination (from in-flight wavefront sensor data) and additive-measurement noise. In comparison to the modified phase-variance approach, the results show that the modified slope-discrepancy approach more accurately estimates atmospheric optical turbulence strength over a wide range of conditions.
View Article and Find Full Text PDFThe work presented here experimentally measures the tilt imposed on a laser beam by the atmosphere from Shack-Hartmann wavefront sensor measurements collected in-flight. Tip/tilt is imposed on the laser beam by propagating through optical turbulent structures larger than or of the order of the size of the beam diameter. This tip/tilt causes a dynamic, net deflection of the beam in the far field, referred to as jitter, which poses a serious problem for tracking in directed energy applications.
View Article and Find Full Text PDFThe aero-optical environment around a hemisphere-on-cylinder turret with both flat and conformal windows was studied experimentally in flight using the Airborne Aero-Optical Laboratory-Transonic for a range of subsonic and transonic Mach numbers between 0.5 and 0.8.
View Article and Find Full Text PDFSingle-molecule optical experiments carried out in conjunction with externally applied electric fields show deliberate spatial and intensity control over CdSe nanowire (NW) emission. In particular, by applying external fields to electrically isolated (single) NWs, their emission can be localized in areas of the wire closest to the positive electrode. In a few cases, the resulting emission intensity increases over the corresponding zero-field value by nearly an order of magnitude.
View Article and Find Full Text PDF