Graphene oxide (GO) has immense potential for widespread use in diverse and biomedical applications owing to its thermal and chemical resistance, excellent electrical properties and solubility, and high surface-to-volume ratio. However, development of GO-based biological nanocomposites and biosensors has been hampered by its poor intrinsic biocompatibility and difficult covalent biofunctionalization across its lattice. Many studies exploit the strategy of chemically modifying GO by noncovalent and reversible attachment of (bio)molecules or sole covalent biofunctionalization of residual moieties at the lattice edges, resulting in a low coating coverage and a largely bioincompatible composite.
View Article and Find Full Text PDFThe present work reports nanocomposite of CdSe/VO core-shell quantum dots with reduced graphene oxide (rGO-V-CdSe), as an efficient lightweight electromagnetic wave shielding material, synthesized by a simplistic solvothermal approach. The as-synthesized nanocomposite was analyzed for its structural, compositional and morphological features by x-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy and x-ray photoelectron spectroscopy (XPS). The measurement of complex permittivity/permeability and total shielding efficiency of the as-synthesized samples has been done in a wide frequency range of 8-12 GHz (X-band).
View Article and Find Full Text PDFIn this paper, we demonstrate a facile solvothermal synthesis of a vanadium(v) doped MoS-rGO nanocomposites for highly efficient electrochemical hydrogen evolution reaction (HER) at room temperature. The surface morphology, crystallinity and elemental composition of the as-synthesized material have been thoroughly analyzed. Its fascinating morphology propelled us to investigate the electrochemical performance towards the HER.
View Article and Find Full Text PDFIn this work we propose multilayer graphene (MLG) nanobelts for high current interconnections with single wall carbon nanotubes (SWCNT) and compare these with metal contacts. MLG contacts were directly printed on the SWCNT, without any additional metal parts, demonstrating the possibility to use these materials as interconnections in microelectronics. Different work function metals Al, Ti and Pd were probed for the lowest contact resistance with the SWCNT.
View Article and Find Full Text PDFJ Colloid Interface Sci
April 2018
Palladium nanoparticles decorated reduced graphene oxide (Pd-rGO) and palladium nanoparticles intercalated inside nitrogen doped reduced graphene oxide (Pd-NrGO) hybrids have been synthesized by applying a very simple, fast and economic route using microwave-assisted in-situ reduction and exfoliation method. The Pd-NrGO hybrids materials show good activity as catalyst for ethanol electro oxidation for direct ethanol fuel cells (DEFCs) as compared to Pd-rGO hybrids. The enhanced direct ethanol fuel cell can serve as alternative to fossil fuels because it is renewable and environmentally-friendly with a high energy conversion efficiency and low pollutant emission.
View Article and Find Full Text PDFIn this article we demonstrate a simple approach to fabricate interdigitated in-plane electrodes for flexible micro-supercapacitors (MSCs). A nanosecond ultraviolet laser treatment is used to reduce and pattern the electrodes on thick graphite oxide (GO) freestanding films. These laser-treated regions obtained by direct writing provide the conducting channels for electrons in the capacitors.
View Article and Find Full Text PDFIn the present work, we have synthesized three-dimensional (3D) reduced graphene oxide nanosheets (rGO NSs) containing iron oxide nanoparticles (FeO NPs) hybrids (3D FeO/rGO) by one-pot microwave approach. Structural and morphological studies reveal that the as-synthesized FeO/rGO hybrids were composed of faceted FeO NPs induced into the interconnected network of rGO NSs. The morphologies and structures of the 3D hybrids have been characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy and X-ray photoelectron spectrometer (XPS).
View Article and Find Full Text PDFAn electrochemical sensor has been developed for the detection of Bisphenol-A (BPA) using photolithographically patterned platinum electrodes modified with multilayer graphene nanobelts (GNB). Compared to bare electrodes, the GNB modified electrode exhibited enhanced BPA oxidation current, due to the high effective surface area and high adsorption capacity of the GNB. The sensor showed a linear response over the concentration range from 0.
View Article and Find Full Text PDFIn the present study, we report the electrochemical sensing property of multi-layer graphene nanobelts (GNBs) towards dopamine (DA). GNBs are synthesized from natural graphite and characterized by using techniques like field-emission scanning electron microscopy, atomic force microscopy and Raman spectroscopy. An electrochemical sensor based on GNBs is developed for the detection of DA.
View Article and Find Full Text PDFGraphene, in single layer or multi-layer forms, holds great promise for future electronics and high-temperature applications. Resistance to oxidation, an important property for high-temperature applications, has not yet been extensively investigated. Controlled thinning of multi-layer graphene (MLG), e.
View Article and Find Full Text PDFObjective: To investigate the influence of the reprocessing technique of enzymatic bath with ultrasonic cleaning and ethylene oxide sterilization on the chemical properties and morphological structure of polymeric coatings of guide wire for regular guiding catheter.
Methods: These techniques simulated the routine of guide wire reprocessing in many hemodynamic services in Brazil and other countries. Samples from three different manufacturers were verified by scanning electron microscopy and X-ray photoelectron spectroscopy.
The accuracy of thermal conductivity measurements by the micro-Raman technique for suspended multi-layer graphene flakes has been shown to depend critically on the quality of the thermal contacts between the flakes and the metal electrodes used as the heat sink. The quality of the contacts can be improved by nonlocal laser annealing at increased power. The improvement of the thermal contacts to initially rough metal electrodes is attributed to local melting of the metal surface under laser heating, and increased area of real metal-graphene contact.
View Article and Find Full Text PDFIn this work, catalytic thermal chemical vapor deposition method, using a mixture of methane and hydrogen at atmospheric pressure in a horizontal tubular quartz furnace, was used to grow carbon nanostructured materials. Silicon wafers with SiO2 or Al2O3 layers were used as support for thin nickel film deposition used as catalyst. It has been shown that the interaction between catalysts and substrates is of critical importance for carbon nanotube growth.
View Article and Find Full Text PDF