We consider optical transmission systems based on the nonlinear frequency division multiplexing (NFDM) concept, i.e., the systems employing the nonlinear Fourier transform (NFT) for signal processing and data modulation.
View Article and Find Full Text PDFA synthetic photonic lattice (SPL) is a re-configurable test-bed for studying the dynamics of one-dimensional mesh lattices including the photonic implementations of discrete time quantum walks. Unlike other realizations of photonic lattices, SPL possesses easy and fast control of lattice parameters. Here we consider disordered SPL where the coupling ratio between the two fiber loops realizing the lattice is random but does not change between the round trips.
View Article and Find Full Text PDFWhat is the maximum rate at which information can be transmitted error-free in fibre-optic communication systems? For linear channels, this was established in classic works of Nyquist and Shannon. However, despite the immense practical importance of fibre-optic communications providing for >99% of global data traffic, the channel capacity of optical links remains unknown due to the complexity introduced by fibre nonlinearity. Recently, there has been a flurry of studies examining an expected cap that nonlinearity puts on the information-carrying capacity of fibre-optic systems.
View Article and Find Full Text PDFWe scrutinize the concept of integrable nonlinear communication channels, resurrecting and extending the idea of eigenvalue communications in a novel context of nonsoliton coherent optical communications. Using the integrable nonlinear Schrödinger equation as a channel model, we introduce a new approach-the nonlinear inverse synthesis method-for digital signal processing based on encoding the information directly onto the nonlinear signal spectrum. The latter evolves trivially and linearly along the transmission line, thus, providing an effective eigenvalue division multiplexing with no nonlinear channel cross talk.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
April 2014
We investigate the mobility of nonlinear localized modes in a generalized discrete Ginzburg-Landau-type model, describing a one-dimensional waveguide array in an active Kerr medium with intrinsic, saturable gain and damping. It is shown that exponentially localized, traveling discrete dissipative breather-solitons may exist as stable attractors supported only by intrinsic properties of the medium, i.e.
View Article and Find Full Text PDFUsing the integrable nonlinear Schrödinger equation (NLSE) as a channel model, we describe the application of nonlinear spectral management for effective mitigation of all nonlinear distortions induced by the fiber Kerr effect. Our approach is a modification and substantial development of the so-called "eigenvalue communication" idea first presented in A. Hasegawa, T.
View Article and Find Full Text PDFWe examine the existence and stability of discrete spatial solitons in coupled nonlinear lasing cavities (waveguide resonators), addressing the case of active defocusing media, where the gain exceeds damping in the low-amplitude limit. A new family of stable localized structures is found: these are bright and gray cavity solitons representing the connections between homogeneous and inhomogeneous states. Solitons of this type can be controlled by discrete diffraction and are stable when the bistability of homogenous states is absent.
View Article and Find Full Text PDFClusters of temporal optical solitons--stable self-localized light pulses preserving their form during propagation--exhibit properties characteristic of that encountered in crystals. Here, we introduce the concept of temporal solitonic information crystals formed by the lattices of optical pulses with variable phases. The proposed general idea offers new approaches to optical coherent transmission technology and can be generalized to dispersion-managed and dissipative solitons as well as scaled to a variety of physical platforms from fiber optics to silicon chips.
View Article and Find Full Text PDFWe show in the framework of the 1D nonlinear Schrödinger equation that the value of the refraction angle of a fundamental soliton beam passing through an optical lattice can be controlled by adjusting either the shape of an individual waveguide or the relative positions of the waveguides. In the case of the shallow refractive index modulation, we develop a general approach for the calculation of the refraction angle change. The shape of a single waveguide crucially affects the refraction direction due to the appearance of a structural form factor in the expression for the density of emitted waves.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
March 2010
We have studied the soliton propagation through a segment containing random pointlike scatterers. In the limit of small concentration of scatterers when the mean distance between the scatterers is larger than the soliton width, a method has been developed for obtaining the statistical characteristics of the soliton transmission through the segment. The method is applicable for any classical particle traversing through a disordered segment with the given velocity transformation after each act of scattering.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
October 2008
We consider the random input problem for a nonlinear system modeled by the integrable one-dimensional self-focusing nonlinear Schrödinger equation (NLSE). We concentrate on the properties obtained from the direct scattering problem associated with the NLSE. We discuss some general issues regarding soliton creation from random input.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
March 2007
We address the breakup (splitting) of multisoliton solutions of the nonlinear Schrödinger equation (NLSE), occurring due to linear loss. Two different approaches are used for the study of the splitting process. The first one is based on the direct numerical solution of the linearly damped NLSE and the subsequent analysis of the eigenvalue drift for the associated Zakharov-Shabat spectral problem.
View Article and Find Full Text PDF