The perturbed free induction decay (PFID) observed in ultrafast infrared spectroscopy was used to unveil the rates at which different vibrational modes of the same atomic-scale defect can interact with their environment. The N_{3}VH^{0} defect in diamond provided a model system, allowing a comparison of stretch and bend vibrational modes within different crystal lattice environments. The observed bend mode (first overtone) exhibited dephasing times T_{2}=2.
View Article and Find Full Text PDFThiomaleimides undergo efficient intermolecular [2 + 2] photocycloaddition reactions and offer applications from photochemical peptide stapling to polymer crosslinking; however, the reactions are limited to the formation of the head-to-head isomers. Herein, we present an intramolecular variation which completely reverses the stereochemical outcome of this photoreaction, quantitatively generating adducts which minimise the structural disturbance of the disulfide staple and afford a 10-fold increase in quantum yield. We demonstrate the application of this reaction on a protein scaffold, using light to confer thiol stability to an antibody fragment conjugate.
View Article and Find Full Text PDFMany photoactivated processes involve a change in oxidation state during the reaction pathway and formation of highly reactive photoactivated species. Isolating these reactive species and studying their early-stage femtosecond to nanosecond (fs-ns) photodynamics can be challenging. Here we introduce a combined ultrafast transient absorption-spectroelectrochemistry (TA-SEC) approach using freestanding boron doped diamond (BDD) mesh electrodes, which also extends the time domain of conventional spectrochemical measurements.
View Article and Find Full Text PDFArtificial light-harvesting systems in aqueous media which mimic nature are of significant importance; however, they are often restrained by the solubility and the undesired aggregation-caused quenching effect of the hydrophobic chromophores. Here, we report a generalized strategy toward the construction of efficient artificial light-harvesting systems based on supramolecular peptide nanotubes in water. By molecularly aligning the hydrophobic chromophores along the nanotubes in a slipped manner, an artificial light-harvesting system with a two-step sequential Förster resonance energy transfer process is successfully fabricated, showing an energy transfer efficiency up to 95% and a remarkably high fluorescence quantum yield of 30%, along with high stability.
View Article and Find Full Text PDFFerroelectric-paraelectric superlattices show emerging new states, such as polar vortices, through the interplay and different energy scales of various thermodynamic constraints. By introducing magnetic coupling at BiFeO-LaSrMnO interfaces epitaxially grown on SrTiO substrate, we find, for the first time in thin films, a sub-nanometer thick lamella-like BiFeO. The emergent phase is characterized by an arrangement of a two unit cell thick lamella-like structure featuring antiparallel polarization, resulting an antiferroelectric-like structure typically associated with a morphotropic phase transition.
View Article and Find Full Text PDFSinapoyl malate is a natural plant sunscreen molecule which protects leaves from harmful ultraviolet radiation. Here, the ultrafast dynamics of three sinapoyl malate derivatives, sinapoyl L-dimethyl malate, sinapoyl L-diethyl malate and sinapoyl L-di-t-butyl malate, have been studied using transient electronic absorption spectroscopy, in a dioxane and methanol solvent environment to investigate how well preserved these dynamics remain with increasing molecular complexity. In all cases it was found that, upon photoexcitation, deactivation occurs via a trans-cis isomerisation pathway within ∼20-30 ps.
View Article and Find Full Text PDFHeterostructures built from 2D, atomically thin crystals are bound by the van der Waals force and exhibit unique optoelectronic properties. Here, we report the structure, composition and optoelectronic properties of 1D van der Waals heterostructures comprising carbon nanotubes wrapped by atomically thin nanotubes of boron nitride and molybdenum disulfide (MoS). The high quality of the composite was directly made evident on the atomic scale by transmission electron microscopy, and on the macroscopic scale by a study of the heterostructure's equilibrium and ultrafast optoelectronics.
View Article and Find Full Text PDFHypoxic tumours are a major problem for cancer photodynamic therapy. Here, we show that photoredox catalysis can provide an oxygen-independent mechanism of action to combat this problem. We have designed a highly oxidative Ir(III) photocatalyst, [Ir(ttpy)(pq)Cl]PF ([1]PF, where 'ttpy' represents 4'-(p-tolyl)-2,2':6',2''-terpyridine and 'pq' represents 3-phenylisoquinoline), which is phototoxic towards both normoxic and hypoxic cancer cells.
View Article and Find Full Text PDFMaterials with electrically tunable optical properties offer a wide range of opportunities for photonic applications. The optical properties of the single-walled carbon nanotubes (SWCNTs) can be significantly altered in the near-infrared region by means of electrochemical doping. The states' filling, which is responsible for the optical absorption suppression under doping, also alters the nonlinear optical response of the material.
View Article and Find Full Text PDFPhotoprotection from harmful ultraviolet (UV) radiation exposure is a key problem in modern society. Mycosporine-like amino acids found in fungi, cyanobacteria, macroalgae, phytoplankton, and animals are already presenting a promising form of natural photoprotection in sunscreen formulations. Using time-resolved transient electronic absorption spectroscopy and guided by complementary ab initio calculations, we help to unravel how the core structures of these molecules perform under UV irradiation.
View Article and Find Full Text PDFContinuous advancements in biophysics and medicine at the molecular level make the requirements to image structure-function processes in living cells ever more acute. While fluorophores such as the green fluorescent protein have proven instrumental toward such efforts, the advent of nondiffraction limited microscopy limits the utility of such fluorescent tags. Monoaminomaleimides are small, single molecule fluorophores that have been shown to possess stark variations in their emission spectra in different solvent environments, making them a potentially powerful tool for a myriad of applications.
View Article and Find Full Text PDFTo explore the effects of ring substitution on dissociation dynamics, the primary photochemistry of 2-ethylpyrrole was explored using ultrafast ion imaging techniques. Photoexcitation to the S state, a πσ* state, in the range from 238 to 265 nm results in cleavage of the N-H bond with an H atom appearance lifetime of ca. 70 fs.
View Article and Find Full Text PDFThe relationship between exposure to ultraviolet (UV) radiation and skin cancer urges the need for extra photoprotection, which is presently provided by widespread commercially available sunscreen lotions. Apart from having a large absorption cross section in the UVA and UVB regions of the electromagnetic spectrum, the chemical absorbers in these photoprotective products should also be able to dissipate the excess energy in a safe way, i.e.
View Article and Find Full Text PDFUltrafast time-resolved ion yield (TR-IY) and velocity map imaging spectroscopies are employed to reveal the relaxation dynamics after photoexcitation in ethyl 4-hydroxy-3-methoxycinnamate (ethyl ferulate, EF), an active ingredient in commercially available sunscreens. In keeping with a bottom-up strategy, the building blocks of EF, 2-methoxy-4-vinylphenol (MVP) and 4-hydroxy-3-methoxycinnamyl alcohol (coniferyl alcohol, ConA), were also studied to assist in our understanding of the dynamics of EF as we build up in molecular complexity. In contrast to the excited state dynamics of MVP and ConA, which are described by a single time constant (>900 ps), the dynamics of EF are described by three time constants (15 ± 4 ps, 148 ± 47 ps, and >900 ps).
View Article and Find Full Text PDFMethyl-E-4-methoxycinnamate (E-MMC) is a model chromophore of the commonly used commercial sunscreen agent, 2-ethylhexyl-E-4-methoxycinnamate (E-EHMC). In an effort to garner a molecular-level understanding of the photoprotection mechanisms in operation with E-EHMC, we have used time-resolved pump-probe spectroscopy to explore E-MMC's and E-EHMC's excited state dynamics upon UV-B photoexcitation to the S (1ππ*) state in both the gas- and solution-phase. In the gas-phase, our studies suggest that the excited state dynamics are driven by non-radiative decay from the 1ππ* to the S (1nπ*) state, followed by de-excitation from the 1nπ* to the ground electronic state (S).
View Article and Find Full Text PDFH atom loss following near ultraviolet photoexcitation of gas phase 2-thiophenethiol molecules has been studied experimentally, by photofragment translational spectroscopy (PTS) methods, and computationally, by ab initio electronic structure calculations. The long wavelength (277.5 ≥ λ(phot) ≥ 240 nm) PTS data are consistent with S-H bond fission after population of the first (1)πσ* state.
View Article and Find Full Text PDFThe time-resolved photofragmentation dynamics of 4-tert-butylcatechol were studied following one photon excitation to the S1 (1(1)ππ*) state with ultraviolet radiation in the range 260 ≤ λ ≤ 286 nm. The preparation of an aligned molecular ensemble via photoexcitation leads to anisotropy in the H atom photofragments. These H atoms originate from the decay of the S1 state through coupling onto the S2 ((1)πσ*) state, which is dissociative along the nonintramolecular hydrogen bonded "free" O-H bond.
View Article and Find Full Text PDFThe ability to probe energy flow in molecules, following the absorption of ultraviolet light, is crucial to unraveling photophysical phenomena. Here we excite a coherent superposition of vibrational states in the first excited electronic state (S1) in catechol, resulting in a vibrational wave packet. The observed quantum beats, assigned to superpositions of the low-frequency, and strongly mixed, O-H torsional mode τ2, elegantly demonstrate how changes in geometry upon photoionization from the S1 state to the ground state of the cation (D0) enables one to probe energy flow at the very early stages of photoexcitation in this biological chromophore.
View Article and Find Full Text PDFEumelanin is a naturally synthesized ultraviolet light absorbing biomolecule, possessing both photoprotective and phototoxic properties. We infer insight into these properties of eumelanin using a bottom-up approach, by investigating an ultraviolet absorbing motif of eumelanin, 4-tert-butylcatechol. Utilizing a combination of femtosecond transient electronic absorption spectroscopy and time-resolved velocity map ion imaging, our results suggest an environmental-dependent relaxation pathway, following irradiation at 267 nm to populate the S1 ((1)ππ*) state.
View Article and Find Full Text PDFThe dynamics of photoexcited 2,4-dimethylpyrrole (DMP) were studied using time-resolved velocity map imaging spectroscopy over a range of photoexcitation wavelengths (276-238 nm). Two dominant H atom elimination channels were inferred from the time-resolved total kinetic energy release spectra, one which occurs with a time constant of ∼120 fs producing H atoms with high kinetic energies centered around 5000-7000 cm(-1) and a second channel with a time constant of ∼3.5 ps producing H atoms with low kinetic energies centered around 2500-3000 cm(-1).
View Article and Find Full Text PDFThe photoinduced dynamics of the lignin building blocks syringol, guaiacol, and phenol were studied using time-resolved ion yield spectroscopy and velocity map ion imaging. Following irradiation of syringol and guaiacol with a broad-band femtosecond ultraviolet laser pulse, a coherent superposition of out-of-plane OH torsion and/or OMe torsion/flapping motions is created in the first excited (1)ππ* (S1) state, resulting in a vibrational wavepacket, which is probed by virtue of a dramatic nonplanar → planar geometry change upon photoionization from S1 to the ground state of the cation (D0). Any similar quantum beat pattern is absent in phenol.
View Article and Find Full Text PDFIn many chemical reactions, an activation barrier must be overcome before a chemical transformation can occur. As such, understanding the behaviour of molecules in energetically excited states is critical to understanding the chemical changes that these molecules undergo. Among the most prominent reactions for mankind to understand are chemical changes that occur in our own biological molecules.
View Article and Find Full Text PDFThe excited state dynamics of resorcinol (1,3-dihydroxybenzene) following UV excitation at a range of pump wavelengths, 278 ≥ λ ≥ 255 nm, have been investigated using a combination of time-resolved velocity map ion imaging and ultrafast time-resolved ion yield measurements coupled with complementary ab initio calculations. After excitation to the 1(1)ππ* state we extract a timescale, τ1, for excited state relaxation that decreases as a function of excitation energy from 2.70 ns to ~120 ps.
View Article and Find Full Text PDF