NMR field cycling relaxometry is a powerful method for determining the rotational and translational dynamics of ions, molecules, and dissolved particles. This is in particular true for ionic liquids (ILs) in which both ions carry NMR sensitive nuclei. In the IL triethylammonium bis(trifluoromethanesulfonyl)imide ([TEA][NTf]), there are H nuclei at the [TEA] cations and F nuclei at the [NTf] anions.
View Article and Find Full Text PDFFungal Biol Biotechnol
September 2024
Background: The application of plant-beneficial microorganisms as bio-fertilizer and biocontrol agents has gained traction in recent years, as both agriculture and forestry are facing the challenges of poor soils and climate change. Trichoderma spp. are gaining popularity in agriculture and forestry due to their multifaceted roles in promoting plant growth through e.
View Article and Find Full Text PDFThe caseinolytic protease is a highly conserved serine protease, crucial to prokaryotic and eukaryotic protein homeostasis, and a promising antibacterial and anticancer drug target. Herein, we describe the potent cystargolides as the first natural β-lactone inhibitors of the proteolytic core ClpP. Based on the discovery of two clpP genes next to the cystargolide biosynthetic gene cluster in Kitasatospora cystarginea, we explored ClpP as a potential cystargolide target.
View Article and Find Full Text PDFConspectusIonic liquids (ILs) are attracting increasing interest in science and engineering due to their unique properties that can be tailored for specific applications. Clearly, a better understanding of their behavior on the microscopic scale will help to elucidate macroscopic fluid phenomena and thereby promote potential applications. The advantageous properties of these innovative fluids arise from the delicate balance of Coulomb interactions, hydrogen bonding, and dispersion forces.
View Article and Find Full Text PDFDefects fundamentally govern the properties of all real materials. Correlating molecular defects to macroscopic quantities remains a challenge, particularly in the liquid phase. Herein, we report the influence of hydrogen bonds (HB) acting as defects in mixtures of non-hydroxyl-functionalized ionic liquids (ILs) with an increasing concentration of hydroxyl-functionalized ILs.
View Article and Find Full Text PDFWe report strong isotope effects for the protic ionic liquid triethylammonium methanesulfonate [TEA][OMs] by means of deuterium solid-state NMR spectroscopy covering broad temperature ranges from 65 K to 313 K. Both isotopically labelled PILs differ in non-deuterated and fully deuterated ethyl groups of the triethyl ammonium cations. The N-D bond of both cations is used as sensitive probe for hydrogen bonding and structural ordering.
View Article and Find Full Text PDFWe show that solid-state NMR spectroscopy is a suitable method for characterizing the structure, hydrogen bond dynamics and phase transition behavior in protic ionic liquids (PILs). Deuteron line shape and spin relaxation time analysis provide a description of the structural and dynamical heterogeneity in the solid state of the model PIL triethyl ammonium bis(trifluoromethanesulfonyl)amide [TEA][NTf]. Therein, we observed two deuteron quadrupole coupling constant for the ND bond of the TEA cation, indicating differently strong hydrogen bonds to the nitrogen and oxygen atoms of the NTf anion, as we could confirm by DFT calculations.
View Article and Find Full Text PDFThe paradigm of supramolecular chemistry relies on the delicate balance of noncovalent forces. Here we present a systematic approach for controlling the structural versatility of halide salts by the nature of hydrogen bonding interactions. We synthesized halide salts with hydroxy-functionalized pyridinium cations [HOC Py] (n=2, 3, 4) and chloride, bromide and iodide anions, which are typically used as precursor material for synthesizing ionic liquids by anion metathesis reaction.
View Article and Find Full Text PDFThe formation of aggregates of ionic species is a crucial process in liquids and solutions. Ion speciation is particularly interesting for the case of ionic liquids (ILs) since these Coulombic fluids consist solely of ions. Most of their unique properties, such as enthalpies of vaporization and conductivities, are strongly related to ion pair formation.
View Article and Find Full Text PDFWe measured the deuteron quadrupole coupling constants (DQCCs) for hydroxy-functionalized ionic liquids (ILs) with varying alkyl chain length over the temperature range between 60 and 200 K by means of solid-state NMR spectroscopy. For all temperatures, the H spectra show two DQCCs representing different types of hydrogen bonds. Higher values, ranging from 220 to 250 kHz, indicate weaker hydrogen bonds between cation and anion (c-a), and lower values varying from 165 to 210 kHz result from stronger hydrogen bonds between the OD groups of cations (c-c), in agreement with recent observations in infrared, neutron diffraction, and NMR studies.
View Article and Find Full Text PDFIn hydroxy-functionalized ionic liquids, two types of hydrogen bonding coexist: the conventional H-bonds between cation and anion (c-a) and those between cation and cation (c-c), although the interaction between like-charged ions is supposed to be much weaker due to the repulsive Coulomb forces. Counting the cations involved in either (c-a) or (c-c) clusters is a challenge. For that purpose, we recently performed neutron diffraction (ND) measurements and molecular dynamics (MD) simulations at and above room temperature accompanied by NMR solid-state experiments in the glassy state of the ILs.
View Article and Find Full Text PDFWe provide comprehensive understanding of "like-likes-like" charge attraction in hydroxy-functionalized ionic liquids (ILs) by means of infrared spectroscopy (IR), quantum chemistry and differential scanning calorimetry (DSC). We show that hydrogen bonding between cation and cation (c-c) is possible despite the repulsive forces between ions of like charge. Already at room temperature, the (c-c) hydrogen bonds can compete with the regular Coulomb-enhanced hydrogen bonds between cation and anion (c-a).
View Article and Find Full Text PDFIbuprofen is a well-established non-steroidal anti-inflammatory drug, inhibiting the prostaglandin-endoperoxide synthase. One of the key features defining the ibuprofen structure is the doubly intermolecular O-HO[double bond, length as m-dash]C hydrogen bond in cyclic dimers as know from carboxylic acids and confirmed by X-ray analysis. Until now, there was neither information about the vaporization enthalpy of ibuprofen nor about how this thermal property is determined by the subtle balance between different types of intermolecular interaction.
View Article and Find Full Text PDFWe show that deuteron quadrupole coupling constants (DQCCs), and reorientational correlation times of molecular bonds N-D that are involved in hydrogen bonding, can be determined from NMR T1 relaxation time experiments simultaneously. For this purpose, we used trialkylammonium-based protic ionic liquids (PILs) as model compounds. They exhibit high viscosities and wide liquid ranges that allow measurements far beyond the extreme narrowing region (ω0τc ≪ 1).
View Article and Find Full Text PDFWe present deuteron quadrupole coupling constants (DQCC) for hydroxyl-functionalized ionic liquids (ILs) in the crystalline or glassy states characterizing two types of hydrogen bonding: The regular Coulomb-enhanced hydrogen bonds between cation and anion (c-a), and the unusual hydrogen bonds between cation and cation (c-c), which are present despite repulsive Coulomb forces. We measure these sensitive probes of hydrogen bonding by means of solid-state NMR spectroscopy. The DQCCs of (c-a) ion pairs and (c-c) H-bonds are compared to those of salt bridges in supramolecular complexes and those present in molecular liquids.
View Article and Find Full Text PDFWe characterize the double-faced nature of hydrogen bonding in hydroxy-functionalized ionic liquids by means of neutron diffraction with isotopic substitution (NDIS), molecular dynamics (MD) simulations, and quantum chemical calculations. NDIS data are fit using the empirical potential structure refinement technique (EPSR) to elucidate the nearest neighbor H⋅⋅⋅O and O⋅⋅⋅O pair distribution functions for hydrogen bonds between ions of opposite charge and the same charge. Despite the presence of repulsive Coulomb forces, the cation-cation interaction is stronger than the cation-anion interaction.
View Article and Find Full Text PDFThe quantification of hydrogen bonding and dispersion energies from vaporization enthalpies is a great challenge. Dissecting interaction energies is particularly difficult for ionic liquids (ILs), for which the composition of the different types of interactions is known neither for the liquid nor for the gas phase. In this study, we demonstrate the existence of ion pairs in the gas phase and dissect the interaction energies exclusively from measured vaporization enthalpies of different alkylated protic ILs (PILs) and aprotic ILs (AILs) and the molecular analogues of their cations.
View Article and Find Full Text PDFQuantum chemical calculations have been employed to study the kinetic and thermodynamic stability of hydroxy-functionalized 1-(3-hydroxyalkyl)pyridinium cationic dimers. For [Py-(CH2)n-OH+]2 structures with n = 2-17 we have calculated the robust local minima with clear dissociation barriers preventing their "Coulomb explosion" into separated cations. For n = 15 hydrogen bonding and dispersion forces fully compensate for the repulsive Coulomb forces between the cations allowing for the quantification of the pure hydrogen bond in the order of 20 kJ mol-1.
View Article and Find Full Text PDFQuantum chemical calculations have been employed to study kinetically stable cationic clusters, wherein the monovalent cations are trapped by hydrogen bonding despite strongly repulsive electrostatic forces. We calculated linear and cyclic clusters of the hydroxy-functionalized cation N-(3-hydroxypropyl) pyridinium, commonly used as cation in ionic liquids. The largest kinetically stable cluster was a cyclic hexamer that very much resembles the structural motifs of molecular clusters, as known for water and alcohols.
View Article and Find Full Text PDFThe heterogeneity in dynamics has important consequences for understanding the viscosity, diffusion, ionic mobility, and the rates of chemical reactions in technology relevant systems such as polymers, metallic glasses, aqueous solutions, and inorganic materials. Herein, we study the spatial and dynamic heterogeneities in ionic liquids by means of solid state NMR spectroscopy. In the H spectra of the protic ionic liquid [TEA][OTf] we observe anisotropic and isotropic signals at the same time.
View Article and Find Full Text PDFWe present the first deuteron quadrupole coupling constants (DQCCs) for selected protic ionic liquids (PILs) measured by solid-state NMR spectroscopy. The experimental data are supported by dispersion-corrected density functional theory (DFT-D3) calculations and molecular dynamics (MD) simulations. The DQCCs of the N-D bond in the triethylammonium cations are the lowest reported for deuterons in PILs, indicating strong hydrogen bonds between ions.
View Article and Find Full Text PDFIt is well known that gas-phase experiments and computational methods point to the dominance of dispersion forces in the molecular association of hydrocarbons. Estimates or even quantification of these weak forces are complicated due to solvent effects in solution. The dissection of interaction energies and quantification of dispersion interactions is particularly challenging for polar systems such as ionic liquids (ILs) which are characterized by a subtle balance between Coulomb interactions, hydrogen bonding, and dispersion forces.
View Article and Find Full Text PDFWith the passage of the Patient Protection and Affordable Care Act, the requirements for hospitals to achieve tax-exempt status include performing a triennial community health needs assessment and developing a plan to address identified needs. To address community health needs, multisector collaborative efforts to improve both health care and non-health care determinants of health outcomes have been the most effective and sustainable. In 2015, CDC released the Community Health Improvement Navigator to facilitate the development of these efforts.
View Article and Find Full Text PDFDirect spectroscopic evidence for hydrogen-bonded clusters of like-charged ions is reported for ionic liquids. The measured infrared O-H vibrational bands of the hydroxyethyl groups in the cations can be assigned to the dispersion-corrected DFT calculated frequencies of linear and cyclic clusters. Compensating the like-charge Coulomb repulsion, these cationic clusters can range up to cyclic tetramers resembling molecular clusters of water and alcohols.
View Article and Find Full Text PDFThe properties of ionic liquids are determined by the energy-balance between Coulomb-interaction, hydrogen-bonding, and dispersion forces. Out of a set of protic ionic liquids (PILs), including trialkylammonium cations and methylsulfonate and triflate anions we could detect the transfer from hydrogen-bonding to dispersion-dominated interaction between cation and anion in the PIL [(C6 H13 )3 NH][CF3 SO3 ]. The characteristic vibrational features for both ion-pair species can be detected and assigned in the far-infrared spectra.
View Article and Find Full Text PDF