Although theoretically predicted, the simultaneous excitation of several resonant modes in sunspots has not been observed. Like any harmonic oscillator, a solar magnetic flux tube can support a variety of resonances, which constitute the natural response of the system to external forcing. Apart from a few single low order eigenmodes in small scale magnetic structures, several simultaneous resonant modes were not found in extremely large sunspots.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
February 2021
The magnetic and convective nature of the Sun's photosphere provides a unique platform from which generated waves can be modelled, observed and interpreted across a wide breadth of spatial and temporal scales. As oscillations are generated or emerge through the photospheric layers, the interplay between the rapidly evolving densities, temperatures and magnetic field strengths provides dynamic evolution of the embedded wave modes as they propagate into the tenuous solar chromosphere. A focused science team was assembled to discuss the current challenges faced in wave studies in the lower solar atmosphere, including those related to spectropolarimetry and radiative transfer in the optically thick regions.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
February 2021
The instrumental advances made in this new era of 4 m class solar telescopes with unmatched spectropolarimetric accuracy and sensitivity will enable the study of chromospheric magnetic fields and their dynamics with unprecedented detail. In this regard, spectropolarimetric diagnostics can provide invaluable insight into magneto-hydrodynamic (MHD) wave processes. MHD waves and, in particular, Alfvénic fluctuations associated with particular wave modes were recently recognized as important mechanisms not only for the heating of the outer layers of the Sun's atmosphere and the acceleration of the solar wind, but also for the elemental abundance anomaly observed in the corona of the Sun and other Sun-like stars (also known as first ionization potential) effect.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
February 2021
We report detection of oscillations in brightness temperature, size and horizontal velocity of three small bright features in the chromosphere of a plage/enhanced-network region. The observations, which were taken with high temporal resolution (i.e.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
February 2021
By direct measurements of the gas temperature, the Atacama Large Millimeter/submillimeter Array (ALMA) has yielded a new diagnostic tool to study the solar chromosphere. Here, we present an overview of the brightness-temperature fluctuations from several high-quality and high-temporal-resolution (i.e.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
February 2021
High-resolution solar observations show the complex structure of the magnetohydrodynamic (MHD) wave motion. We apply the techniques of proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) to identify the dominant MHD wave modes in a sunspot using the intensity time series. The POD technique was used to find modes that are spatially orthogonal, whereas the DMD technique identifies temporal orthogonality.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
February 2021
Determining accurate plasma Doppler (line-of-sight) velocities from spectroscopic measurements is a challenging endeavour, especially when weak chromospheric absorption lines are often rapidly evolving and, hence, contain multiple spectral components in their constituent line profiles. Here, we present a novel method that employs machine learning techniques to identify the underlying components present within observed spectral lines, before subsequently constraining the constituent profiles through single or multiple Voigt fits. Our method allows active and quiescent components present in spectra to be identified and isolated for subsequent study.
View Article and Find Full Text PDFThe existence of the Sun's hot atmosphere and the solar wind acceleration continues to be an outstanding problem in solar-astrophysics. Although magnetohydrodynamic (MHD) modes and dissipation of magnetic energy contribute to heating and the mass cycle of the solar atmosphere, yet direct evidence of such processes often generates debate. Ground-based 1-m Swedish Solar Telescope (SST)/CRISP, Hα 6562.
View Article and Find Full Text PDFKarhunen-Loève functions represent the best choice for modal wavefront reconstruction. They are usually built up as a linear combination of Zernike polynomials by using principal component analysis methods; thus they are ordered by covariance. Using Shannon information theory, we provide a best reordering procedure based on the concept of mutual information.
View Article and Find Full Text PDF