Publications by authors named "Standaert D"

Metabotropic glutamate receptors, which are linked via G-proteins to second messenger systems, have been implicated in the physiological regulation of dopaminergic neurons of the substantia nigra pars compacta as well as in neurodegeneration. Of the eight known metabotropic glutamate receptors, metabotropic glutamate receptor 1 is the most abundant subtype in the substantia nigra pars compacta. Metabotropic glutamate receptor 1 is alternatively spliced at the carboxy terminal region to yield five variants: 1a, 1b, 1c, 1d and a form recently identified in human brain, 1g.

View Article and Find Full Text PDF

Early-onset torsion dystonia, an autosomal dominant disease associated with the DYT1 locus on 9q34, is the most frequent genetic form of dystonia. Recent work has revealed that the causative mutation in most cases is deletion of a glutamate residue from the carboxy terminal of torsinA, a 332 amino acid protein encoded by the DYT1 gene. To gain insight into how deletion of a single amino acid can produce such a profound movement disorder, we have mapped the expression of the DYT1 gene in normal human postmortem brain.

View Article and Find Full Text PDF

The corticostriatal pathway is among the largest glutamatergic pathways in the brain, and of particular interest to the study of glutamatergic transmission. The metabotropic glutamate receptors (mGluRs) couple the actions of glutamate to intracellular second messenger systems through G-proteins. The most prominent of the mGluRs present in the target of this pathway, the striatum, is mGluR5.

View Article and Find Full Text PDF

Nitric oxide (NO), an unconventional and diffusible neurotransmitter, is synthesized by nitric oxide synthase (NOS). NMDA glutamate receptors are potent regulators of NO synthesis. We have used dual-label immunofluorescence and confocal microscopy to examine forebrain neurons in the rat that contain high levels of neuronal NOS (nNOS) for the presence of the NMDAR1 receptor subunit protein and regions of this protein encoded by three alternative spliced segments of the NMDAR1 mRNA: N1, C1, and C2.

View Article and Find Full Text PDF

Evidence is accumulating that glutamate-mediated excitotoxicity plays an important role in neuronal degeneration in Parkinson's disease (PD). In addition, alterations in excitatory amino acid neurotransmission in the basal ganglia contribute to the clinical manifestations of motor dysfunction. However, detailed knowledge of the anatomical distribution and subtype specificity of glutamate receptors in the dopamine neurons of human substantia nigra (SN) has been lacking.

View Article and Find Full Text PDF

N-methyl-D-aspartate receptor (NR) activation in the hippocampus and neocortex plays a central role in memory and cognitive function. We analyzed the cellular expression of the five NR subunit (NR1 and NR2A-D) mRNAs in these regions with in situ hybridization and human ribonucleotide probes. Film autoradiograms demonstrated a distinct pattern of hybridization signal in the hippocampal complex and the neocortex with probes for NR1, NR2A, and NR2B mRNA.

View Article and Find Full Text PDF

N-methyl-D-aspartate receptors (NRs) play an important role in basal ganglia function. By using in situ hybridization with ribonucleotide probes, we investigated the regional and cellular distribution of NR subunit mRNA expression in the human basal ganglia: caudate nucleus, putamen, lateral globus pallidus (LGP), and medial globus pallidus (MGP). Analysis of both film autoradiograms and emulsion-dipped slides revealed distinct distribution patterns for each subunit.

View Article and Find Full Text PDF

Metabotropic glutamate receptors (mGluRs), which couple glutamate to second messengers, have important roles in the regulation of movement by the basal ganglia. We used two polyclonal antisera to mGluR1a and mGluR2/3 and confocal laser microscopy to investigate the localization of these receptors in the basal ganglia of the rat. The mGluRs were visualized in combination with an antibody to tyrosine hydroxylase (TH), an antibody to microtubule-associated protein 2 (MAP2, a dendritic marker), or SV2 (an antibody to a protein associated with presynaptic terminals).

View Article and Find Full Text PDF

We examined the effects of N-acetylaspartylglutamate (NAAG), an endogenous peptide thought to be involved in neurotransmission and neuromodulation, on striatal quinolinate lesions, a rodent model of Huntington's disease. We found that NAAG (500 and 1000 nmol) co-injected with quinolinic acid significantly reduced lesion volumes (by 50% and 65%, respectively). A 1000 nmol dose of the non-hydrolyzable analogue, beta-NAAG, also reduced quinolinic acid lesion volumes by 78.

View Article and Find Full Text PDF

Glutamate is the principal excitatory transmitter of the mammalian brain and plays a particularly important role in the physiology of the basal ganglia structures responsible for movement regulation. Using in situ hybridization with oligonucleotide probes, we examined the expression patterns of the five known kainate type glutamate receptor subunit genes, KA1, KA2 and GluR5-7, in the basal ganglia of adult and developing rat brain. In the adult rat, a highly organized and selective pattern of expression of the kainate subunits was observed in the basal ganglia and associated structures as well as in other regions of the brain.

View Article and Find Full Text PDF

Metabotropic glutamate receptors (mGluRs) can be divided into three groups based on sequence homology and pharmacology. We studied expression of group I mGluRs (mGluR1 and mGluR5) in identified neurons of the rat neostriatum, neocortex, and hippocampus using in situ hybridization. Tissue sections were hybridized with radiolabeled RNA probes for mGluR1 or mGluR5 and digoxygenin labeled RNA probes detecting somatostatin (SOM), preproenkephalin (ENK), preprotachykinin (SP), glutamic acid decarboxylase 67 (GAD67), parvalbumin (PARV), or choline acetyltransferase (ChAT) mRNA.

View Article and Find Full Text PDF

We isolated and characterized a cDNA encoding the human metabotropic glutamate receptor subtype 1b (hmGluR1b). In situ hybridization studies in human brain regions revealed a higher distribution of mGluR1 mRNA in the dentate gyrus of the hippocampus, the substantia nigra pars compacta and the Purkinje cell layer of the cerebellum compared to other regions studied. We established stable expression of recombinant hmGluR1b in L(tk-) mouse fibroblast and Chinese hamster ovary (CHO-dhfr-) cells.

View Article and Find Full Text PDF

Huntington's disease is caused by a mutation of the gene encoding the protein huntingtin. Features of the human disease, characterized by selective loss of neurons from the neostriatum, can be replicated in rodents by administration of excitotoxins. In both affected individuals and the rodent model, there is massive loss of striatal projection neurons with selective sparing of interneurons.

View Article and Find Full Text PDF

We have used a quantitative in situ hybridization method with human ribonucleotide probes to examine the regional and cellular distribution of N-methyl-D-aspartate receptor (NMDAR) subunit mRNAs in the human cerebellum. Purkinje cells showed very dense labeling for NMDAR1 mRNA, dense labeling for NMDAR2A mRNA, and moderate labeling for NMDAR2D mRNA, whereas labeling for NMDAR2C mRNA was low. Granule cells showed high hybridization signals for the NMDAR1 and NMDAR2C mRNAs and moderate signals for the NMDAR2A and NMDAR2D mRNAs.

View Article and Find Full Text PDF

NMDA receptors are composed of proteins from two families: NMDAR1, which are required for channel activity, and NMDAR2, which modulate properties of the channels. The mRNA encoding the NMDAR2D subunit has a highly restricted pattern of expression: in the forebrain, it is found in only a small subset of cortical, neostriatal and hippocampal neurons. We have used a quantitative double-label in situ hybridization method to examine the expression of NMDAR2D mRNA in neurochemically defined populations of neurons.

View Article and Find Full Text PDF

The laminar distribution and cellular levels of expression of mRNAs encoding N-methyl-D-aspartate receptor subunits (NMDAR1, NMDAR2A-D and the alternatively spliced isoforms of NMDAR1) were examined in prefrontal cortex of rat by in situ hybridization using film and emulsion autoradiography. Film autoradiograms demonstrated a distinctive laminar distribution of hybridization signals for each of the probes recognizing NMDAR1, NMDAR2A, and NMDAR2B messenger RNA; hybridization with probes for NMDAR2C and NMDAR2D resulted in scattered signals without laminar organization. Grain counting disclosed that neurons in layer V displayed the highest and neurons in layer IV the lowest absolute number of grains for all probes examined.

View Article and Find Full Text PDF

N-methyl-D-aspartate (NMDA) glutamate receptors have an established role in the regulation of motor behavior by the basal ganglia. Recent studies have revealed that NMDA receptors are heteromeric assemblies of structurally related subunits from two families: NMDAR1, which is required for channel activity, and NMDAR2A-D, which modulate the properties of the channels. In the rat, the NMDA receptor subunits exhibit anatomically restricted patterns of expression, so that each component of the basal ganglia has a distinct NMDA receptor subunit mRNA phenotype.

View Article and Find Full Text PDF

Striatal quinolinate lesions mimic many of the neuropathological characteristics of Huntington's disease. This excitotoxicity is mediated by combined activity of N-methyl-D-aspartate and metabotropic glutamate receptors (mGluRs). Using recently developed phenylglycine derivatives, (S)-4-carboxy-3-hydroxyphenylglycine ((S)-4C3HPG) and (+)-alpha-methyl-4-carboxyphenylglycine ((+)-MCPG), we investigated the role of the different sub-classes of mGluRs in the in vivo excitotoxic process.

View Article and Find Full Text PDF

N-Methyl-D-aspartate (NMDA) receptors are enriched in the neostriatum and are thought to mediate several actions of glutamate including neuronal excitability, long-term synaptic plasticity, and excitotoxic injury. NMDA receptors are assembled from several subunits (NMDAR1, NMDAR2A-D) encoded by five genes; alternative splicing gives rise to eight isoforms of subunit NMDAR1. We studied the expression of NMDA receptor subunits in neurochemically identified striatal neurons of adult rats by in situ hybridization histochemistry using a double-labeling technique.

View Article and Find Full Text PDF

Excitotoxic cell death is hypothesized to contribute to numerous neuropathologic conditions, including hypoxic/ischemic encephalopathy, hypoglycemia, Parkinson's disease, and Huntington's disease. Neuronal death from excitotoxic lesions has been shown to be an active process, with activation of immediate early gene transcription, resulting in secondary changes in gene expression. Another feature of neurotoxic cell death that has been examined is the presence of DNA fragmentation, which presumably indicates impending nuclear disintegration.

View Article and Find Full Text PDF

Metabotropic glutamate receptors (mGluRs) mediate the effects of glutamate neurotransmission on intracellular second messenger systems. Among the seven distinct mGluR receptor isoforms currently identified, the mGluR5 isoform is expressed particularly prominently in the striatum, where it may contribute to neuronal plasticity, motor behaviors, and excitotoxic injury. mGluR5 mRNA expression in striatal enkephalinergic, somatostatinergic, and cholinergic neurons was examined using double label in situ hybridization techniques.

View Article and Find Full Text PDF

The postnatal expression of metabotropic glutamate receptors was studied in rat brain by in situ hybridization and autoradiographic binding techniques. The messenger RNAs encoding five metabotropic glutamate receptor subtypes named mGluR1-5 had distinct regional and temporal expression profiles. mGluR1, mGluR2 and mGluR4 messenger RNA expression was low at birth and increased during postnatal development.

View Article and Find Full Text PDF

The cerebral cortex is the primary source of glutamatergic afferents to the neostriatum. We used in situ hybridization to examine the effect of removal of the glutamatergic input to the striatum by unilateral frontal cortical ablation on the expression of genes encoding subunits from three families of glutamate receptors: N-methyl-D-aspartate receptors (NMDAR1, NMDAR2A, and NMDAR2B); alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors (GluR1-4, flip and flop splice variants); and metabotropic receptors (mGluR1-5). Significant changes were restricted to the dorsolateral quadrant of the ipsilateral striatum, the main projection area of the sensorimotor cortex.

View Article and Find Full Text PDF

Metabotropic glutamate receptors (mGluRs) couple the actions of glutamate to intracellular second messenger systems through G-proteins. The mGluRs play an important role in the regulation of basal ganglia function. Ligand binding studies have revealed that the basal ganglia contain at least two pharmacological types of metabotropic binding sites.

View Article and Find Full Text PDF