Publications by authors named "Stancovski I"

Degradation of a protein via the ubiquitin system involves two discrete steps, signaling by covalent conjugation of multiple moieties of ubiquitin and degradation of the tagged substrate. Conjugation is catalyzed via a three-step mechanism that involves three distinct enzymes that act successively: E1, E2, and E3. The first two enzymes catalyze activation of ubiquitin and transfer of the activated moiety to E3, respectively.

View Article and Find Full Text PDF

Degradation of a protein via the ubiquitin system involves two discrete steps, conjugation of ubiquitin to the substrate and degradation of the adduct. Conjugation follows a three-step mechanism. First, ubiquitin is activated by the ubiquitin-activating enzyme, E1.

View Article and Find Full Text PDF

The transcription factor c-Fos is a short-lived cellular protein. The levels of the protein fluctuate significantly and abruptly during changing pathophysiological conditions. Thus, it is clear that degradation of the protein plays an important role in its tightly regulated activity.

View Article and Find Full Text PDF

In most cases, the transcriptional factor NF-kappa B is a heterodimer consisting of two subunits, p50 and p65, which are encoded by two distinct genes of the Rel family. p50 is translated as a precursor of 105 kDa. The C-terminal domain of the precursor is rapidly degraded, forming the mature p50 subunit consisted of the N-terminal region of the molecule.

View Article and Find Full Text PDF

Amplification and overexpression of the erbB-2/neu protooncogene are frequently associated with aggressive clinical course of certain human adenocarcinomas, and therefore the encoded surface glycoprotein is considered a candidate target for immunotherapy. We previously generated a series of anti-ErbB-2 monoclonal antibodies (mAbs) that either accelerate or inhibit the tumorigenic growth of erbB-2-transformed murine fibroblasts. The present study extended this observation to a human tumor cell line grown as xenografts in athymic mice and addressed the biochemical differences between the two classes of mAbs.

View Article and Find Full Text PDF

Cell surface molecules essential for the transformed phenotype or growth of malignant cells are attractive targets for anticancer immunotherapy. Antibodies specific to Neu/HER2, a human adenocarcinoma-associated growth factor receptor, were demonstrated to have tumor-inhibitory capacity. Yet, the inefficient accessibility of antibodies to solid tumors limits their clinical use.

View Article and Find Full Text PDF

Neu differentiation factor (NDF, also called heregulin) is a 44-kilodalton glycoprotein that stimulates tyrosine phosphorylation of the Neu/HER-2 receptor and induces phenotypic differentiation of certain mammary cancer cell lines to growth-arrested and milk-producing cells. To determine which molecules participate in the concomitant morphological alterations, we analyzed the expression of several cytoskeletal and surface molecules and found that NDF elevated the expression of the intercellular adhesion molecule 1 (ICAM-1) in cultured AU-565 human adenocarcinoma cells. The levels of both the protein and the mRNA of ICAM-1 were elevated after 3-5 days of treatment with NDF.

View Article and Find Full Text PDF

The neu/erbB-2 protooncogene encodes a transmembrane tyrosine kinase homologous to receptors for polypeptide growth factors. The oncogenic potential of the presumed receptor is released through multiple genetic mechanisms including a point mutation, truncation of non-catalytic sequences and overexpression. The latter mechanism appears to be relevant to human cancers as elevated expression of the neu/erbB-2 gene is frequently observed in solid tumors of various adenocarcinomas.

View Article and Find Full Text PDF

The HER-2/neu protooncogene (also called erbB-2) encodes a tyrosine kinase receptor for a polypeptide growth-regulatory molecule. Amplification and overexpression of the gene have been frequently observed in human adenocarcinomas and correlated with poor prognosis. To explore the potential of antibody therapy directed at the HER-2/Neu receptor, we have raised a panel of murine monoclonal antibodies to the human protein, and tested their effect on the tumorigenic growth of HER-2/neu-transfected fibroblasts in athymic mice.

View Article and Find Full Text PDF

The ERBB2 (also called HER2, neu, and c-erbB-2) gene product, which encodes a growth factor receptor, was implicated in the malignancy of human adenocarcinomas. An antibody directed to the rat oncogenic receptor has been previously shown to have an antitumor effect in model systems. In an attempt to extend this observation to the protooncogenic human receptor and also to understand the underlying mechanism, we generated a panel of monoclonal antibodies specific to the extracellular portion of the ERBB2 protein.

View Article and Find Full Text PDF

The ribose moiety of 5-fluorouridine (FUR) was oxidized with periodate and the product was bound through a poly(L-lysine) bridge to monoclonal antibodies, denoted SF25MAb, reactive with a human colon carcinoma LS180. The antibody was linked via its polysaccharide (previously oxidized with periodate) to the poly(L-lysine)-drug conjugate. The linking of FUR-poly(L-lysine) to the antibody markedly increased the latter's binding to the tumor cells.

View Article and Find Full Text PDF