Publications by authors named "Stan Wullschleger"

Current knowledge of the spatiotemporal patterns of changes in soil moisture-based terrestrial aridity has considerable uncertainty. Using Standardized Soil Moisture Index (SSI) calculated from multi-source merged data sets, we find widespread drying in the global midlatitudes, and wetting in the northern subtropics and in spring between 45°N-65°N, during 1971-2016. Formal detection and attribution analysis shows that human forcings, especially greenhouse gases, contribute significantly to the changes in 0-10 cm SSI during August-November, and 0-100 cm during September-April.

View Article and Find Full Text PDF

Reliable projections of wildfire and associated socioeconomic risks are crucial for the development of efficient and effective adaptation and mitigation strategies. The lack of or limited observational constraints for modeling outputs impairs the credibility of wildfire projections. Here, we present a machine learning framework to constrain the future fire carbon emissions simulated by 13 Earth system models from the Coupled Model Intercomparison Project phase 6 (CMIP6), using historical, observed joint states of fire-relevant variables.

View Article and Find Full Text PDF

Arctic tundra soils store a globally significant amount of mercury (Hg), which could be transformed to the neurotoxic methylmercury (MeHg) upon warming and thus poses serious threats to the Arctic ecosystem. However, our knowledge of the biogeochemical drivers of MeHg production is limited in these soils. Using substrate addition (acetate and sulfate) and selective microbial inhibition approaches, we investigated the geochemical drivers and dominant microbial methylators in 60-day microcosm incubations with two tundra soils: a circumneutral fen soil and an acidic bog soil, collected near Nome, Alaska, United States.

View Article and Find Full Text PDF

A grand challenge facing society is climate change caused mainly by rising CO concentration in Earth's atmosphere. Terrestrial plants are linchpins in global carbon cycling, with a unique capability of capturing CO via photosynthesis and translocating captured carbon to stems, roots, and soils for long-term storage. However, many researchers postulate that existing land plants cannot meet the ambitious requirement for CO removal to mitigate climate change in the future due to low photosynthetic efficiency, limited carbon allocation for long-term storage, and low suitability for the bioeconomy.

View Article and Find Full Text PDF

Climate warming will alter photosynthesis and respiration not only via direct temperature effects on leaf biochemistry but also by increasing atmospheric dryness, thereby reducing stomatal conductance and suppressing photosynthesis. Our knowledge on how climate warming affects these processes is mainly derived from seedlings grown under highly controlled conditions. However, little is known regarding temperature responses of trees growing under field settings.

View Article and Find Full Text PDF

Boreal peatland forests have relatively low species diversity and thus impacts of climate change on one or more dominant species could shift ecosystem function. Despite abundant soil water availability, shallowly rooted vascular plants within peatlands may not be able to meet foliar demand for water under drought or heat events that increase vapor pressure deficits while reducing near surface water availability, although concurrent increases in atmospheric CO could buffer resultant hydraulic stress. We assessed plant water relations of co-occurring shrub (primarily Rhododendron groenlandicum and Chamaedaphne calyculata) and tree (Picea mariana and Larix laricina) species prior to, and in response to whole ecosystem warming (0 to +9°C) and elevated CO using 12.

View Article and Find Full Text PDF
Article Synopsis
  • Warming temperatures in Arctic permafrost zones are altering hydrological and geochemical conditions, impacting carbon cycling by heterotrophic microbes, particularly in areas with polygonal features formed by ice wedges.
  • The study quantifies carbon dioxide (CO) and methane (CH) release from high center polygons (HCPs) through lab incubations at various temperatures, revealing important differences in gas emissions between HCP center and trough soils.
  • Results show that soil conditions like water availability and organic carbon content significantly affect gas production, with HCP trough soils producing more CH and having methanogens present, while CO emissions vary over time in HCP soils.
View Article and Find Full Text PDF

Human life intimately depends on plants for food, biomaterials, health, energy, and a sustainable environment. Various plants have been genetically improved mostly through breeding, along with limited modification via genetic engineering, yet they are still not able to meet the ever-increasing needs, in terms of both quantity and quality, resulting from the rapid increase in world population and expected standards of living. A step change that may address these challenges would be to expand the potential of plants using biosystems design approaches.

View Article and Find Full Text PDF

The availability of labile carbon (C) compounds in Arctic wetland soils is expected to increase due to thawing permafrost and increased fermentation as a result of decomposition of organic matter with warming. How microbial communities respond to this change will affect the balance of CO and CH emitted during anaerobic organic matter decomposition, and ultimately the net radiative forcing of greenhouse gas emissions from these soils. While soil water content limits aerobic respiration, the factors controlling methanogenesis and anaerobic respiration are poorly defined in suboxic Arctic soils.

View Article and Find Full Text PDF

The long atmospheric residence time of CO creates an urgent need to add atmospheric carbon drawdown to CO regulatory strategies. Synthetic and systems biology (SSB), which enables manipulation of cellular phenotypes, offers a powerful approach to amplifying and adding new possibilities to current land management practices aimed at reducing atmospheric carbon. The participants (in attendance: Christina Agapakis, George Annas, Adam Arkin, George Church, Robert Cook-Deegan, Charles DeLisi, Dan Drell, Sheldon Glashow, Steve Hamburg, Henry Jacoby, Henry Kelly, Mark Kon, Todd Kuiken, Mary Lidstrom, Mike MacCracken, June Medford, Jerry Melillo, Ron Milo, Pilar Ossorio, Ari Patrinos, Keith Paustian, Kristala Jones Prather, Kent Redford, David Resnik, John Reilly, Richard J.

View Article and Find Full Text PDF

Our society faces multiple daunting challenges including finding sustainable solutions towards climate change mitigation; efficient production of food, biofuels, and biomaterials; maximizing land-use efficiency; and enabling a sustainable bioeconomy. Plants can provide environmentally and economically sustainable solutions to these challenges due to their inherent capabilities for photosynthetic capture of atmospheric CO, allocation of carbon to various organs and partitioning into various chemical forms, including contributions to total soil carbon. In order to enhance crop productivity and optimize chemistry simultaneously in the above- and belowground plant tissues, transformative biosystems design strategies are needed.

View Article and Find Full Text PDF

Africa contains some of the most vulnerable ecosystems to fires. Successful seasonal prediction of fire activity over these fire-prone regions remains a challenge and relies heavily on in-depth understanding of various driving mechanisms underlying fire evolution. Here, we assess the seasonal environmental drivers and predictability of African fire using the analytical framework of Stepwise Generalized Equilibrium Feedback Assessment (SGEFA) and machine learning techniques (MLTs).

View Article and Find Full Text PDF

Phosphorus (P) is a limiting or co-limiting nutrient to plants and microorganisms in diverse ecosystems that include the arctic tundra. Certain soil minerals can adsorb or co-precipitate with phosphate, and this mineral-bound P provides a potentially large P reservoir in soils. Iron (Fe) oxyhydroxides have a high capacity to adsorb phosphate; however, the ability of Fe oxyhydroxides to adsorb phosphate and limit P bioavailability in organic tundra soils is not known.

View Article and Find Full Text PDF

Increases in the availability of nitrogen (N) may have consequences for plant growth and nutrient cycling in N-limited tundra plant communities. We investigated the impact alder ( spp. ), an N-fixing deciduous shrub, has on tundra N cycling at a hillslope located on Alaska's Seward Peninsula.

View Article and Find Full Text PDF

Extracellular enzymes are mainly responsible for depolymerizing soil organic matter (SOM) in terrestrial ecosystems, and soil minerals are known to affect enzyme activity. However, the mechanisms and the effects of mineral-enzyme interactions on enzymatic degradation of organic matter remain poorly understood. In this study, we examined the adsorption of fungal β-glucosidase enzyme on minerals and time-dependent changes of enzymatic reactivity, measured by the degradation of two organic substrates (i.

View Article and Find Full Text PDF

Characterizing low molecular weight (LMW) dissolved organic matter (DOM) in soils and evaluating the availability of this labile pool is critical to understanding the underlying mechanisms that control carbon storage or release across terrestrial systems. However, due to wide-ranging physicochemical diversity, characterizing this complex mixture of small molecules and how it varies across space remains an analytical challenge. Here, we evaluate an untargeted approach to detect qualitative and relative-quantitative variations in LMW DOM with depth using water extracts from a soil core from the Alaskan Arctic, a unique system that contains nearly half the Earth's terrestrial carbon and is rapidly warming due to climate change.

View Article and Find Full Text PDF

How terrestrial biosphere models (TBMs) represent leaf photosynthesis and its sensitivity to temperature are two critical components of understanding and predicting the response of the Arctic carbon cycle to global change. We measured the effect of temperature on the response of photosynthesis to irradiance in six Arctic plant species and determined the quantum yield of CO fixation ( ) and the convexity factor (θ). We also determined leaf absorptance (α) from measured reflectance to calculate on an absorbed light basis ( ) and enabled comparison with nine TBMs.

View Article and Find Full Text PDF

We quantified seasonal CO2 assimilation capacities for seven dominant vascular species in a wet boreal forest peatland then applied data to a land surface model parametrized to the site (ELM-SPRUCE) to test if seasonality in photosynthetic parameters results in differences in simulated plant responses to elevated CO2 and temperature. We collected seasonal leaf-level gas exchange, nutrient content and stand allometric data from the field-layer community (i.e.

View Article and Find Full Text PDF

Background: Crassulacean acid metabolism (CAM) enhances plant water-use efficiency through an inverse day/night pattern of stomatal closure/opening that facilitates nocturnal CO uptake. CAM has evolved independently in over 35 plant lineages, accounting for ~ 6% of all higher plants. Agave species are highly heat- and drought-tolerant, and have been domesticated as model CAM crops for beverage, fiber, and biofuel production in semi-arid and arid regions.

View Article and Find Full Text PDF

Massive amounts of organic carbon have accumulated in Arctic permafrost and soils due to anoxic and low temperature conditions that limit aerobic microbial respiration. Alternative electron acceptors are thus required for microbes to degrade organic carbon in these soils. Iron or iron oxides have been recognized to play an important role in carbon cycle processes in Arctic soils, although the exact form and role as an electron acceptor or donor remain poorly understood.

View Article and Find Full Text PDF

Molecular composition of the Arctic soil organic carbon (SOC) and its susceptibility to microbial degradation are uncertain due to heterogeneity and unknown SOC compositions. Using ultrahigh-resolution mass spectrometry, we determined the susceptibility and compositional changes of extractable dissolved organic matter (EDOM) in an anoxic warming incubation experiment (up to 122 days) with a tundra soil from Alaska (United States). EDOM was extracted with 10 mM NHHCO from both the organic- and mineral-layer soils during incubation at both -2 and 8 °C.

View Article and Find Full Text PDF

Microbial decomposition of soil organic carbon (SOC) in thawing Arctic permafrost is important in determining greenhouse gas feedbacks of tundra ecosystems to climate. However, the changes in microbial community structure during SOC decomposition are poorly known. Here we examine these changes using frozen soils from Barrow, Alaska, USA, in anoxic microcosm incubation at -2 and 8°C for 122 days.

View Article and Find Full Text PDF

Terrestrial biosphere models (TBMs) are highly sensitive to model representation of photosynthesis, in particular the parameters maximum carboxylation rate and maximum electron transport rate at 25°C (V and J , respectively). Many TBMs do not include representation of Arctic plants, and those that do rely on understanding and parameterization from temperate species. We measured photosynthetic CO response curves and leaf nitrogen (N) content in species representing the dominant vascular plant functional types found on the coastal tundra near Barrow, Alaska.

View Article and Find Full Text PDF