ACS Appl Mater Interfaces
January 2020
A combinational effect of nanostructured crystallites and π-bonded interfaces is much attractive in solving the conflict between strength/hardness and toughness to design extrinsically superhard materials with enhanced fracture toughness and/or other properties such as tunable electronic properties. In the present work, taking the experimentally observed π-bonded interfaces in nanostructured diamond as the prototype, we theoretically investigated their stabilities, electronic structures, and mechanical strengths with special consideration of the size effect of nanocrystallites or nanolayers. It is unprecedentedly found that the π-bonded interfaces exhibit tunable electronic semiconducting properties, superior fracture toughness, and anomalously large creep-like plasticity at the cost of minor losses in strength/hardness; such unique combination is uncovered to be attributed to the ductile bridging effect of the sp bonds across the π-bonded interface that dominates the localized plastic flow channel.
View Article and Find Full Text PDFThe heterostructures of five monolayers B1-Ti Zr N(111), = 1.0, 0.6, 0.
View Article and Find Full Text PDFRecently, a hardness similar to that of diamond has been reported for a quasiternary, nitride-based nanocomposite. The related, quasibinary nanocomposite "nc-TiN/a-Si3N4," which may be regarded as the prototype of the family of superhard nc-metal-N/a-Si3N4 systems, also exhibits a significant hardness enhancement. Extensive density-functional theory calculations indicate that the superhardness is related to the preferential formation of TiN(111) polar interfaces with a thin beta-Si3N4-derived layer.
View Article and Find Full Text PDF