Publications by authors named "Stan Oome"

Potato is the third most important food crop in the world. Diverse pathogens threaten sustainable crop production but can be controlled, in many cases, through the deployment of disease resistance genes belonging to the family of nucleotide-binding, leucine-rich-repeat (NLR) genes. To identify effective disease resistance genes in established varieties, we have successfully established SMRT-AgRenSeq in tetraploid potatoes and have further enhanced the methodology by including dRenSeq in an approach that we term SMR-AgRenSeq-d.

View Article and Find Full Text PDF

Cultivated potato is a clonally propagated autotetraploid species with a highly heterogeneous genome. Phased assemblies of six cultivars including two chromosome-scale phased genome assemblies revealed extensive allelic diversity, including altered coding and transcript sequences, preferential allele expression, and structural variation that collectively result in a highly complex transcriptome and predicted proteome, which are distributed across the homologous chromosomes. Wild species contribute to the extensive allelic diversity in tetraploid cultivars, demonstrating ancestral introgressions predating modern breeding efforts.

View Article and Find Full Text PDF

Background: Downy mildews are the most speciose group of oomycetes and affect crops of great economic importance. So far, there is only a single deeply-sequenced downy mildew genome available, from Hyaloperonospora arabidopsidis. Further genomic resources for downy mildews are required to study their evolution, including pathogenicity effector proteins, such as RxLR effectors.

View Article and Find Full Text PDF

Plants and animals employ innate immune systems to cope with microbial infection. Pattern-triggered immunity relies on the recognition of microbe-derived patterns by pattern recognition receptors (PRRs). Necrosis and ethylene-inducing peptide 1-like proteins (NLPs) constitute plant immunogenic patterns that are unique, as these proteins are produced by multiple prokaryotic (bacterial) and eukaryotic (fungal, oomycete) species.

View Article and Find Full Text PDF

Microbe- or host damage-derived patterns mediate activation of pattern-triggered immunity (PTI) in plants. Microbial virulence factor (effector)-triggered immunity (ETI) constitutes a second layer of plant protection against microbial attack. Various necrosis and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs) produced by bacterial, oomycete and fungal microbes are phytotoxic virulence factors that exert immunogenic activities through phytotoxin-induced host cell damage.

View Article and Find Full Text PDF

Necrosis and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs) are secreted by a wide range of plant-associated microorganisms. They are best known for their cytotoxicity in dicot plants that leads to the induction of rapid tissue necrosis and plant immune responses. The biotrophic downy mildew pathogen Hyaloperonospora arabidopsidis encodes 10 different noncytotoxic NLPs (HaNLPs) that do not cause necrosis.

View Article and Find Full Text PDF

Nep1-like proteins (NLP) are best known for their cytotoxic activity in dicot plants. NLP are taxonomically widespread among microbes with very different lifestyles. To learn more about this enigmatic protein family, we analyzed more than 500 available NLP protein sequences from fungi, oomycetes, and bacteria.

View Article and Find Full Text PDF

Oomycetes in the class Saprolegniomycetidae of the Eukaryotic kingdom Stramenopila have evolved as severe pathogens of amphibians, crustaceans, fish and insects, resulting in major losses in aquaculture and damage to aquatic ecosystems. We have sequenced the 63 Mb genome of the fresh water fish pathogen, Saprolegnia parasitica. Approximately 1/3 of the assembled genome exhibits loss of heterozygosity, indicating an efficient mechanism for revealing new variation.

View Article and Find Full Text PDF

The genome of the downy mildew pathogen Hyaloperonospora arabidopsidis encodes necrosis and ethylene-inducing peptide 1 (Nep1)-like proteins (NLP). Although NLP are widely distributed in eukaryotic and prokaryotic plant pathogens, it was surprising to find these proteins in the obligate biotrophic oomycete H. arabidopsidis.

View Article and Find Full Text PDF