Over the past two decades, the CICECO-hub scientists have devoted substantial efforts to advancing bioactive inorganic materials based on calcium phosphates and alkali-free bioactive glasses. A key focus has been the deliberate incorporation of therapeutic ions like Mg, Sr, Zn, Mn, or Ga to enhance osteointegration and vascularization, confer antioxidant properties, and impart antimicrobial effects, marking significant contributions to the field of biomaterials and bone tissue engineering. Such an approach is expected to circumvent the uncertainties posed by methods relying on growth factors, such as bone morphogenetic proteins, parathyroid hormone, and platelet-rich plasma, along with their associated high costs and potential adverse side effects.
View Article and Find Full Text PDFAAA+ proteins (ATPases associated with various cellular activities) comprise a family of powerful ring-shaped ATP-dependent translocases that carry out numerous vital substrate-remodeling functions. ClpB is a AAA+ protein disaggregation machine that forms a two-tiered hexameric ring, with flexible pore loops protruding into its center and binding to substrate proteins. It remains unknown whether these pore loops contribute only passively to substrate-protein threading or have a more active role.
View Article and Find Full Text PDFTo reduce the incidence of total hip revisions, there have been continuous efforts to enhance prosthetic materials and designs to optimize implant survival. A primary implant with a constrained acetabular component is often used to minimize the risk of dislocations even though this approach has some drawbacks as reported in the literature. To address these concerns, this study aimed to assess the survivorship and dislocation rate of a semi-retentive cemented acetabular cup when used as a primary implant.
View Article and Find Full Text PDFSummary: As demand for the automation of biological assays has increased over recent years, the range of measurement types implemented by multiwell plate readers has broadened and the list of published software packages that caters to their analysis has grown. However, most plate readers export data in esoteric formats with little or no metadata, while most analytical software packages are built to work with tidy data accompanied by associated metadata. 'Parser' functions are therefore required to prepare raw data for analysis.
View Article and Find Full Text PDFNovel biomaterials with promising bone regeneration potential, derived from rich, renewable, and cheap sources, are reported. Thus, thin films were synthesized from marine-derived (i.e.
View Article and Find Full Text PDFThe current pandemic has shown that we need sensitive and deployable diagnostic technologies. Surface-enhanced Raman scattering (SERS) sensors can be an ideal solution for developing such advanced point-of-need (PON) diagnostic tests. Homogeneous (reagentless) SERS sensors work by directly responding to the target without any processing step, making them capable for simple one-pot assays, but their limitation is the achievable sensitivity, insufficient compared to what is needed for sensing of viral biomarkers.
View Article and Find Full Text PDFProteolysis is essential for the control of metabolic pathways and the cell cycle. Bacterial caseinolytic proteases (Clp) use peptidase components, such as ClpP, to degrade defective substrate proteins and to regulate cellular levels of stress-response proteins. To ensure selective degradation, access to the proteolytic chamber of the double-ring ClpP tetradecamer is controlled by a critical gating mechanism of the two axial pores.
View Article and Find Full Text PDFThis work was devoted to the first multi-parametric unitary comparative analysis of a selection of sintered piezoceramic materials synthesised by solid-state reactions, aiming to delineate the most promising biocompatible piezoelectric material, to be further implemented into macro-porous ceramic scaffolds fabricated by 3D printing technologies. The piezoceramics under scrutiny were: KNbO, LiNbO, LiTaO, BaTiO, Zr-doped BaTiO, and the (BaCa)(TiZr)O solid solution (BCTZ). The XRD analysis revealed the high crystallinity of all sintered ceramics, while the best densification was achieved for the BaTiO-based materials via conventional sintering.
View Article and Find Full Text PDFChaperonins are biological nanomachines that help newly translated proteins to fold by rescuing them from kinetically trapped misfolded states. Protein folding assistance by the chaperonin machinery is obligatory for a subset of proteins in the bacterial proteome. Chaperonins are large oligomeric complexes, with unusual seven fold symmetry (group I) or eight/nine fold symmetry (group II), that form double-ring constructs, enclosing a central cavity that serves as the folding chamber.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2022
Since its discovery, atomic force microscopy (AFM) has become widely used for surface characterization, evolving from a tool for probing surface topography to a versatile method for characterizing mechanical, electrical, chemical, magnetic, and electro-optical properties of surfaces at the nanoscale. Developments of several AFM-based techniques have enabled even subsurface imaging, which is routinely being carried out at the qualitative level of feature detection for localized subsurface inhomogeneities. We surmise, however, that a quantitative three-dimensional (3D) subsurface characterization can emerge from the AFM mechanical response of flat buried interfaces, and present here a methodology for determining the depth of a film and its mechanical properties.
View Article and Find Full Text PDFThe surface physico-chemistry of metallic implants governs their successful long-term functionality for orthopedic and dentistry applications. Here, we investigated the feasibility of harmoniously combining two of the star materials currently employed in bone treatment/restoration, namely, calcium-phosphate-based bioceramics (in the form of coatings that have the capacity to enhance osseointegration) and titanium alloys (used as bulk implant materials due to their mechanical performance and lack of systemic toxicity). For the first time, bovine-bone-derived hydroxyapatite (BHA) was layered on top of Ti6Al4V substrates using powder injection laser cladding technology, and then subjected, in this first stage of the research, to an array of physical-chemical analyses.
View Article and Find Full Text PDFNat Commun
November 2022
Higher-energy collisional dissociation (HCD) of modified ribonucleosides generates characteristic and highly reproducible nucleoside-specific tandem mass spectra (MS/MS). Here, we demonstrate the capability of HCD spectra in combination with spectral matching for the semi-automated characterization of ribonucleosides. This process involved the generation of an HCD spectral library and the establishment of a mass spectral network for rapid detection with high sensitivity and specificity in a retention time-independent fashion.
View Article and Find Full Text PDFAccumulation of tau is observed in dementia, with human tau displaying 6 isoforms grouped by whether they display either 3 or 4 C-terminal repeat domains (3R or 4R) and exhibit no (0N), one (1N) or two (2N) N terminal repeats. Overexpression of 4R0N-tau in rat hippocampal slices enhanced the L-type calcium (Ca) current-dependent components of the medium and slow afterhyperpolarizations (AHPs). Overexpression of both 4R0N-tau and 4R2N-tau augmented Ca1.
View Article and Find Full Text PDFInt J Environ Res Public Health
July 2022
Background: in this protocol we outline a method of working alongside Aboriginal communities to learn about and facilitate improvement in the oral health habits in Aboriginal adolescents. By facilitating positive oral health in Aboriginal adolescents, we hope to achieve lifelong improvement in oral health and general wellbeing.
Methods: this paper outlines a co-design methodology through which researchers and Aboriginal communities will work together to create a custom oral healthcare program aimed at Aboriginal adolescents.
Bin-Amphiphysin-Rvs (BAR) domain proteins are critical regulators of membrane geometry. They induce and stabilize membrane curvature for processes, such as clathrin-coated pit formation and endosomal membrane tubulation. BAR domains form their characteristic crescent-shaped structure in the dimeric form, indicating that the formation of the dimer is critical to their function of inducing membrane curvature and suggesting that a dynamic monomer-dimer equilibrium regulated by cellular signaling would be a powerful mechanism for controlling BAR domain protein function.
View Article and Find Full Text PDF