Acid-base disturbances in patients with cardiopulmonary or other disorders are common and are often misinterpreted or interpreted incompletely. Treating acid-base disorders in greater detail facilitates pathophysiologic understanding and improved therapeutic planning. Understanding the ratiometric relationship between the lungs, which excrete volatile acid as carbon dioxide, and the kidneys, which contribute to maintenance of plasma bicarbonate, allows precise identification of the dominant acid-base disturbance when more than a simple disorder is present and aids in executing a measured treatment response.
View Article and Find Full Text PDFBackground: Access flow dysfunction, often associated with stenosis, is a common problem in hemodialysis access and may result in progression to thrombosis. Timely identification of accesses in need of evaluation is critical to preserving a functioning access. We hypothesized that a risk score using measurements obtained from the Vasc-Alert surveillance device could be used to predict subsequent interventions.
View Article and Find Full Text PDFContinuous renal replacement therapy (CRRT) is used to manage electrolyte and acid-base imbalances in critically ill patients with acute kidney injury. Although a standard solution and prescription is acceptable in most clinical circumstances, specific disorders may require a tailored approach such as adjusting fluid composition, regulating CRRT dose, and using separate intravenous infusions to mitigate and correct these disturbances. Errors in fluid prescription, compounding, or delivery can be rapidly fatal.
View Article and Find Full Text PDFConcomitant severe metabolic alkalosis, hypernatremia, and kidney failure pose a therapeutic challenge. Hemodialysis to correct azotemia and abnormal electrolytes results in rapid correction of serum sodium, bicarbonate, and urea but presents a risk for dialysis disequilibrium and brain edema. We describe a patient with Zollinger-Ellison syndrome with persistent encephalopathy, severe metabolic alkalosis (highest bicarbonate 81 mEq/L), hypernatremia (sodium 157 mEq/L), and kidney failure despite 30 hours of intravenous crystalloids and proton pump inhibitor.
View Article and Find Full Text PDFBackground: Iron deficiency is common in non-dialysis chronic kidney disease (ND-CKD) patients and, on occasion, requires parenteral iron therapy. We investigated the effect of intravenous iron repletion on platelet counts in ND-CKD patients with and without concomitant darbepoetin administration.
Methods: We conducted a retrospective analysis of ND-CKD patients with iron deficiency anemia treated with low molecular weight iron dextran (LMWID) between 2005 and 2009 at our CKD clinic.
Patients with hypervolemic hyponatremia and kidney failure pose a special therapeutic challenge. Hemodialysis to correct volume overload, azotemia, and abnormal electrolyte levels will result in rapid correction of serum sodium concentration and place the patient at risk for osmotic demyelination syndrome. We present a patient with acute kidney injury and severe hypervolemic hypotonic hyponatremia (serum sodium<100 mEq/L) who was treated successfully with continuous venovenous hemofiltration.
View Article and Find Full Text PDFOptical hemoglobin and oxygen saturation sensor (OHOS) monitor when used in combination with other hemodynamic tools may be useful for continuous hemodynamic monitoring during ultrafiltration. The stand-alone OHOS monitor can easily be deployed predialyzer into the extracorporeal circuit of continuous renal replacement therapy (CRRT) systems. To maximize the accuracy of the OHOS in 24 hr CRRT systems, clotting in the optical blood chamber and the presensor dilution incurred by replacement fluid should be minimized.
View Article and Find Full Text PDFObjective. We aimed to demonstrate safety and efficacy of intravenous (IV) low molecular weight iron dextran (LMWID) during treatment of anemic stage 3 and 4 chronic kidney disease (CKD) patients. Methods.
View Article and Find Full Text PDFBackground: Although erythropoietin (EPO)-hyporesponsive anemia in hemodialysis patients most commonly results from iron deficiency, the contributory role of chronic inflammation and oxidative stress in its pathogenesis is poorly understood. We conducted an open-label prospective study to assess the effect of vitamin C, an antioxidant, on EPO-hyporesponsive anemia in hemodialysis patients with unexplained hyperferritinemia.
Methods: Forty-six of 262 patients in an inner-city hemodialysis center met the inclusion criteria (administration of intravenous iron and EPO for > or = 6 months at a dose > or = 450 U/kg/wk, average 3-month hemoglobin [Hb] level < or = 11.