Prokaryotes have evolved a multitude of defense systems to protect against phage predation. Some of these resemble eukaryotic genes involved in antiviral responses. Here, we set out to systematically project the current knowledge of eukaryotic-like antiviral defense systems onto prokaryotic genomes, using Pseudomonas aeruginosa as a model organism.
View Article and Find Full Text PDFThe Craspase CRISPR-Cas effector consists of the RNA-guided ribonuclease gRAMP and the protease TPR-CHAT, coupling target RNA recognition to protease activation. The natural substrate of Craspase is Csx30, a protein cleaved in two fragments that subsequently activates downstream antiviral pathways. Here, we determined the protease substrate specificity of Craspase from "Jettenia caeni" (-Craspase).
View Article and Find Full Text PDFProkaryotes encode multiple distinct anti-phage defense systems in their genomes. However, the impact of carrying a multitude of defense systems on phage resistance remains unclear, especially in a clinical context. Using a collection of antibiotic-resistant clinical strains of and a broad panel of phages, we demonstrate that defense systems contribute substantially to defining phage host range and that overall phage resistance scales with the number of defense systems in the bacterial genome.
View Article and Find Full Text PDFWith the discovery of CRISPR-controlled proteases, CRISPR-Cas has moved beyond mere nucleic acid targeting into the territory of targeted protein cleavage. Here, we review the understanding of Craspase, the best-studied member of the growing CRISPR RNA-guided protease family. We recollect the original bioinformatic prediction and early experimental characterizations; evaluate some of the mechanistic structural intricacies and emerging biotechnology; discuss open questions and unexplained mysteries; and indicate future directions for the rapidly moving field of the CRISPR proteases.
View Article and Find Full Text PDFCRISPR-Cas enzymes enable RNA-guided bacterial immunity and are widely used for biotechnological applications including genome editing. In particular, the Class 2 CRISPR-associated enzymes (Cas9, Cas12 and Cas13 families), have been deployed for numerous research, clinical and agricultural applications. However, the immense genetic and biochemical diversity of these proteins in the public domain poses a barrier for researchers seeking to leverage their activities.
View Article and Find Full Text PDFTransfer RNAs (tRNAs) in bacteriophage genomes are widespread across bacterial host genera, but their exact function has remained unclear for more than 50 years. Several hypotheses have been proposed, and the most widely accepted one is codon compensation, which suggests that phages encode tRNAs that supplement codons that are less frequently used by the host. Here, we combine several observations and propose a new hypothesis that phage-encoded tRNAs counteract the tRNA-depleting strategies of the host using enzymes such as VapC, PrrC, Colicin D, and Colicin E5 to defend from viral infection.
View Article and Find Full Text PDFsp. ATCC 39006 is a Gram-negative bacterium that has been used to study the function of phage defences, such as CRISPR-Cas, and phage counter-defence mechanisms. To expand our phage collection to study the phage-host interaction with sp.
View Article and Find Full Text PDFBacteriophages (phages) are viruses that specifically attack bacteria. Their use as therapeutics, which constitutes a promising alternative to antibiotics, heavily relies on selecting effective lytic phages against the pathogen of interest. Current selection techniques are laborious and do not allow for direct visualization of phage infection dynamics.
View Article and Find Full Text PDFThe Klebsiella jumbo myophage ϕKp24 displays an unusually complex arrangement of tail fibers interacting with a host cell. In this study, we combine cryo-electron microscopy methods, protein structure prediction methods, molecular simulations, microbiological and machine learning approaches to explore the capsid, tail, and tail fibers of ϕKp24. We determine the structure of the capsid and tail at 4.
View Article and Find Full Text PDFCRISPR-Cas is a widespread adaptive immune system in bacteria and archaea that protects against viral infection by targeting specific invading nucleic acid sequences. Whereas some CRISPR-Cas systems sense and cleave viral DNA, type III and type VI CRISPR-Cas systems sense RNA that results from viral transcription and perhaps invasion by RNA viruses. The sequence-specific detection of viral RNA evokes a cell-wide response that typically involves global damage to halt the infection.
View Article and Find Full Text PDFIn recent years, bacteriophage research has been boosted by a rising interest in using phage therapy to treat antibiotic-resistant bacterial infections. In addition, there is a desire to use phages and their unique proteins for specific biocontrol applications and diagnostics. However, the ability to manipulate phage genomes to understand and control gene functions, or alter phage properties such as host range, has remained challenging due to a lack of universal selectable markers.
View Article and Find Full Text PDFClustered regularly interspaced short palindromic repeats and CRISPR-associated proteins (CRISPR-Cas) has revolutionized genome editing and has great potential for many applications, such as correcting human genetic disorders. To increase the safety of genome editing applications, CRISPR-Cas may benefit from strict control over Cas enzyme activity. Previously, anti-CRISPR proteins and designed oligonucleotides have been proposed to modulate CRISPR-Cas activity.
View Article and Find Full Text PDFAdaptation of clustered regularly interspaced short palindromic repeats (CRISPR) arrays is a crucial process responsible for the unique, adaptive nature of CRISPR-Cas immune systems. The acquisition of new CRISPR spacers from mobile genetic elements has previously been studied for several types of CRISPR-Cas systems. In this study, we used a high-throughput sequencing approach to characterize CRISPR adaptation of the type V-A system from and the type V-B system from .
View Article and Find Full Text PDFIn the evolutionary arms race against phage, bacteria have assembled a diverse arsenal of antiviral immune strategies. While the recently discovered DISARM (Defense Island System Associated with Restriction-Modification) systems can provide protection against a wide range of phage, the molecular mechanisms that underpin broad antiviral targeting but avoiding autoimmunity remain enigmatic. Here, we report cryo-EM structures of the core DISARM complex, DrmAB, both alone and in complex with an unmethylated phage DNA mimetic.
View Article and Find Full Text PDFWhile CRISPR-Cas defence mechanisms have been studied on a population level, their temporal dynamics and variability in individual cells have remained unknown. Using a microfluidic device, time-lapse microscopy and mathematical modelling, we studied invader clearance in Escherichia coli across multiple generations. We observed that CRISPR interference is fast with a narrow distribution of clearance times.
View Article and Find Full Text PDFArgonaute proteins use single-stranded RNA or DNA guides to target complementary nucleic acids. This allows eukaryotic Argonaute proteins to mediate RNA interference and long prokaryotic Argonaute proteins to interfere with invading nucleic acids. The function and mechanisms of the phylogenetically distinct short prokaryotic Argonaute proteins remain poorly understood.
View Article and Find Full Text PDFBackground: The adaptive CRISPR-Cas immune system stores sequences from past invaders as spacers in CRISPR arrays and thereby provides direct evidence that links invaders to hosts. Mapping CRISPR spacers has revealed many aspects of CRISPR-Cas biology, including target requirements such as the protospacer adjacent motif (PAM). However, studies have so far been limited by a low number of mapped spacers in the database.
View Article and Find Full Text PDFProkaryotes adapt to challenges from mobile genetic elements by integrating spacers derived from foreign DNA in the CRISPR array. Spacer insertion is carried out by the Cas1-Cas2 integrase complex. A substantial fraction of CRISPR-Cas systems use a Fe-S cluster containing Cas4 nuclease to ensure that spacers are acquired from DNA flanked by a protospacer adjacent motif (PAM) and inserted into the CRISPR array unidirectionally, so that the transcribed CRISPR RNA can guide target searching in a PAM-dependent manner.
View Article and Find Full Text PDFWe are in the midst of a golden age of uncovering defense systems against bacteriophages. Apart from the fundamental interest in these defense systems, and revolutionary applications that have been derived from them (e.g.
View Article and Find Full Text PDFType III CRISPR-Cas immunity is widespread in prokaryotes and is generally mediated by multisubunit effector complexes. These complexes recognize complementary viral transcripts and can activate ancillary immune proteins. Here, we describe a type III-E effector from “Scalindua brodae” (-gRAMP), which is natively encoded by a single gene with several type III domains fused together.
View Article and Find Full Text PDFCharacteristic properties of type III CRISPR-Cas systems include recognition of target RNA and the subsequent induction of a multifaceted immune response. This involves sequence-specific cleavage of the target RNA and production of cyclic oligoadenylate (cOA) molecules. Here we report that an exposed seed region at the 3' end of the crRNA is essential for target RNA binding and cleavage, whereas cOA production requires base pairing at the 5' end of the crRNA.
View Article and Find Full Text PDFThe immunization of bacteria and archaea against invading viruses via CRISPR adaptation is critically reliant on the efficient capture, accurate processing, and integration of CRISPR spacers into the host genome. The adaptation proteins Cas1 and Cas2 are sufficient for successful spacer acquisition in some CRISPR-Cas systems. However, many CRISPR-Cas systems additionally require the Cas4 protein for efficient adaptation.
View Article and Find Full Text PDFBacteriophages are an invaluable source of novel genetic diversity. Sequencing of phage genomes can reveal new proteins with potential uses as biotechnological and medical tools, and help unravel the diversity of biological mechanisms employed by phages to take over the host during viral infection. Aiming to expand the available collection of phage genomes, we have isolated, sequenced, and assembled the genome sequences of four phages that infect the clinical pathogen Klebsiella pneumoniae: vB_KpnP_FBKp16, vB_KpnP_FBKp27, vB_KpnM_FBKp34, and Jumbo phage vB_KpnM_FBKp24.
View Article and Find Full Text PDFIn-situ resource utilization (ISRU) is increasingly acknowledged as an essential requirement for the construction of sustainable extra-terrestrial colonies. Even with decreasing launch costs, the ultimate goal of establishing colonies must be the usage of resources found at the destination of interest. Typical approaches towards ISRU are often constrained by the mass and energy requirements of transporting processing machineries, such as rovers and massive reactors, and the vast amount of consumables needed.
View Article and Find Full Text PDF