The electronic absorption spectra of the bis(porphyrin) sandwich complexes of the metals Zr, Ce, and Th are studied with time-dependent density functional theory (TDDFT). A ground-state electronic structure analysis reveals that the highest occupied one-electron levels are, as expected, composed of the porphyrin a(1u) and a(2u) highest occupied orbitals (the Gouterman orbitals), but the level pattern is not simply a pair of low-lying nearly degenerate in-phase combinations and a pair of high-lying approximately degenerate antibonding combinations. Instead, the a(1u) split strongly and the a(2u) do not.
View Article and Find Full Text PDF