Publications by authors named "Stamenkovic I"

EWS fusion oncoproteins underlie several human malignancies including Desmoplastic Small Round Cell Tumor (DSRCT), an aggressive cancer driven by EWS-WT1 fusion proteins. Here we combine chromatin occupancy and 3D profiles to identify EWS-WT1-dependent gene regulation networks and target genes. We show that EWS-WT1 is a powerful chromatin activator controlling an oncogenic gene expression program that characterizes primary tumors.

View Article and Find Full Text PDF

The development of targeted therapies offers new hope for patients affected by incurable cancer. However, multiple challenges persist, notably in controlling tumor cell plasticity in patients with refractory and metastatic illness. Neuroblastoma (NB) is an aggressive pediatric malignancy originating from defective differentiation of neural crest-derived progenitors with oncogenic activity due to genetic and epigenetic alterations and remains a clinical challenge for high-risk patients.

View Article and Find Full Text PDF

CIC-DUX4-rearranged sarcoma (CDS) is a rare and aggressive soft tissue tumor that occurs most frequently in young adults. The key oncogenic driver of this disease is the expression of the CIC-DUX4 fusion protein as a result of chromosomal rearrangements. CIC-DUX4 displays chromatin binding properties, and is therefore believed to function as an aberrant transcription factor.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied how cells change during early development and wanted to see if similar changes happen in cancer cells, specifically in a type of pediatric cancer called Ewing sarcoma.
  • They found that a protein called EWS-FLI1 creates special connections in the cell’s DNA that help the cancer cells grow.
  • When they took away EWS-FLI1, the DNA connections changed back to a more normal state, which might allow the cells to behave more like healthy stem cells.
View Article and Find Full Text PDF

Oncogenic fusion proteins generated by chromosomal translocations play major roles in cancer. Among them, fusions between EWSR1 and transcription factors generate oncogenes with powerful chromatin regulatory activities, capable of establishing complex gene expression programs in permissive precursor cells. Here we define the epigenetic and 3D connectivity landscape of Clear Cell Sarcoma, an aggressive cancer driven by the EWSR1-ATF1 fusion gene.

View Article and Find Full Text PDF

Most cancer cells have high need for nicotinamide adenine dinucleotide (NAD) to sustain their survival. This led to the development of inhibitors of nicotinamide (NAM) phosphoribosyltransferase (NAMPT), the rate-limiting NAD biosynthesis enzyme from NAM. Such inhibitors kill cancer cells in preclinical studies but failed in clinical ones.

View Article and Find Full Text PDF

Malignant tumors commonly display necrosis, which invariably triggers an inflammatory response that supports tumor growth. However, the effect on tumor cells of necrotic debris, or damage-associated molecular patterns (DAMPs) released by dying cells is unknown. Here, we addressed the effect of DAMPs on primary Ewing sarcoma (EwS) cells and cell lines grown in 3D (spheroids) and 2D culture.

View Article and Find Full Text PDF

Targeting of the most aggressive tumor cell subpopulations is key for effective management of most solid malignancies. However, the metastable nature of tumor heterogeneity, which allows cells to transition between strong and weak tumorigenic phenotypes, and the lack of reliable markers of tumor-promoting properties hamper identification of the most relevant cells. To overcome these obstacles, we designed a functional microRNA (miR)-based live-cell reporter assay to identify highly tumorigenic cells in xenotransplants of primary Ewing sarcoma (EwS) 3D cultures.

View Article and Find Full Text PDF
Article Synopsis
  • Synovial sarcoma (SyS) is an aggressive cancer driven by the SS18-SSX fusion, showing low levels of T cell infiltration, which indicates immune evasion.
  • Researchers used single-cell RNA sequencing to analyze 16,872 cells from human SyS tumors, identifying a key malignant subpopulation linked to poorer clinical outcomes and immune-deprived areas.
  • The study found that the malignant cell state is influenced by the SS18-SSX fusion and can be targeted with a combination of HDAC and CDK4/CDK6 inhibitors, boosting T cell responses and enhancing treatment effectiveness.
View Article and Find Full Text PDF
Article Synopsis
  • Synovial sarcoma (SyS) is a type of aggressive cancer caused by a specific genetic mutation that fuses the SS18 gene with one of the SSX genes, leading to abnormal gene regulation.
  • Researchers developed organoid models of SyS and conducted extensive genome profiling to uncover how this cancer alters chromatin structure and influences gene expression.
  • Findings revealed that the SS18-SSX fusion disrupts normal cellular processes by changing the way chromatin is remodeled, making SyS cells reliant on specific regulators, and these changes can be reversed if the SS18-SSX fusion is removed.
View Article and Find Full Text PDF

Solid tumor growth triggers a dynamic host response, which recapitulates wound healing and defines the tumor microenvironment (TME). In addition to the action of the tumor cells themselves, the TME is maintained by a myriad of immune and stromal cell-derived soluble mediators and extracellular matrix components whose combined action supports tumor progression. However, therapeutic targeting of the TME has proven challenging because of incomplete understanding of the tumor-host crosstalk at the molecular level.

View Article and Find Full Text PDF

Ewing sarcoma (EwS) is associated with poor prognosis despite current multimodal therapy. Targeting of EWS-FLI1, the fusion protein responsible for its pathogenesis, and its principal downstream targets has not yet produced satisfactory therapeutic options, fueling the search for alternative approaches. Here, we show that the oncofetal RNA-binding protein LIN28B regulates the stability of EWS-FLI1 mRNA in ~10% of EwSs.

View Article and Find Full Text PDF

Mesenchymal stem or stromal cells (MSCs) are pluripotent cells implicated in a broad range of physiological events, including organogenesis and maintenance of tissue homeostasis as well as tissue regeneration and repair. Because their current definition is somewhat loose - based primarily on their ability to differentiate into a variety of mesenchymal tissues, adhere to plastic, and express, or lack, a handful of cell surface markers - MSCs likely encompass several subpopulations, which may have diverse properties. Their diversity may explain, at least in part, the pleiotropic functions that they display in different physiological and pathological settings.

View Article and Find Full Text PDF

Diverse genetic, epigenetic, and developmental programs drive glioblastoma, an incurable and poorly understood tumor, but their precise characterization remains challenging. Here, we use an integrative approach spanning single-cell RNA-sequencing of 28 tumors, bulk genetic and expression analysis of 401 specimens from the The Cancer Genome Atlas (TCGA), functional approaches, and single-cell lineage tracing to derive a unified model of cellular states and genetic diversity in glioblastoma. We find that malignant cells in glioblastoma exist in four main cellular states that recapitulate distinct neural cell types, are influenced by the tumor microenvironment, and exhibit plasticity.

View Article and Find Full Text PDF

Synovial sarcoma is a highly aggressive soft tissue malignancy that often affects adolescents and young adults. It is associated with a unique chromosomal translocation that results in the formation and expression of the fusion gene SS18-SSX, which underlies its pathogenesis. Although SS18-SSX provides a potentially unique therapeutic target, all attempts to neutralise it have been unsuccessful thus far.

View Article and Find Full Text PDF

Various types of repetitive sequences are dysregulated in cancer. In Ewing sarcoma, the oncogenic fusion protein EWS-FLI1 induces chromatin features typical of active enhancers at GGAA microsatellite repeats, but the function of these sites has not been directly demonstrated. Here, by combining nascent transcription profiling with epigenome editing, we found that a subset of GGAA microsatellite repeats is transcriptionally active in Ewing sarcoma and that silencing individual repeats abolishes local nascent transcription and leads to markedly reduced expression of putative target genes.

View Article and Find Full Text PDF

Metastasis is a multi-step process in which direct crosstalk between cancer cells and their microenvironment plays a key role. Here, we assessed the effect of paired tumor-associated and normal lung tissue mesenchymal stem cells (MSCs) on the growth and dissemination of primary human lung carcinoma cells isolated from the same patients. We show that the tumor microenvironment modulates MSC gene expression and identify a four-gene MSC signature that is functionally implicated in promoting metastasis.

View Article and Find Full Text PDF

Metastases are responsible for the vast majority of cancer-related deaths, but, despite intense efforts to understand their underlying mechanisms with the goal of uncovering effective therapeutic targets, treatment of metastatic cancer has progressed minimally. In this review, we examine the biological programs currently proposed to be key drivers of metastasis. On the basis of evidence from a growing body of research, we discuss to what extent the cellular and molecular mechanisms that are suggested to underlie cancer cell dissemination are specific to the metastatic process, as opposed to representing natural primary tumor progression.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) display pleiotropic functions, which include secretion of soluble factors with immunosuppressive activity implicated in cancer progression. We compared the immunomodulatory effects on natural killer (NK) cells of paired intratumor (T)- and adjacent non-tumor tissue (N)-derived MSCs from patients with squamous cell lung carcinoma (SCC). We observed that T-MSCs were more strongly immunosuppressive than N-MSCs and affected both NK function and phenotype, as defined by CD56 expression.

View Article and Find Full Text PDF

Alterations in transcriptional regulators can orchestrate oncogenic gene expression programs in cancer. Here, we show that the BRG1/BRM-associated factor (BAF) chromatin remodeling complex, which is mutated in over 20% of human tumors, interacts with EWSR1, a member of a family of proteins with prion-like domains (PrLD) that are frequent partners in oncogenic fusions with transcription factors. In Ewing sarcoma, we find that the BAF complex is recruited by the EWS-FLI1 fusion protein to tumor-specific enhancers and contributes to target gene activation.

View Article and Find Full Text PDF

IMPs, also known as insulin-like growth factor 2 (IGF2) messenger RNA (mRNA)-binding proteins (IGF2BPs), are highly conserved oncofetal RNA-binding proteins (RBPs) that regulate RNA processing at several levels, including localization, translation, and stability. Three mammalian IMP paralogs (IMP1-3) have been identified that are expressed in most organs during embryogenesis, where they are believed to play an important role in cell migration, metabolism, and stem cell renewal. Whereas some IMP2 expression is retained in several adult mouse organs, IMP1 and IMP3 are either absent or expressed at very low levels in most tissues after birth.

View Article and Find Full Text PDF