Amorphous silicon carbide (a-SiC) is a wide-bandgap semiconductor with high robustness and biocompatibility, making it a promising material for applications in biomedical device passivation. a-SiC thin film deposition has been a subject of research for several decades with a variety of approaches investigated to achieve optimal properties for multiple applications, with an emphasis on properties relevant to biomedical devices in the past decade. This review summarizes the results of many optimization studies, identifying strategies that have been used to achieve desirable film properties and discussing the proposed physical interpretations.
View Article and Find Full Text PDFScalable fabrication of Si nanowires with a critical dimension of about 100 nm is essential to a variety of applications. Current techniques used to reach these dimensions often involve e-beam lithography or deep-UV (DUV) lithography combined with resolution enhancement techniques. In this study, we report the fabrication of <150 nm Si nanowires from SOI substrates using DUV lithography ( = 248 nm) by adjusting the exposure dose.
View Article and Find Full Text PDFField effect transistors (FETs) based on networks of randomly oriented Si nanowires (Si nanonets or Si NNs) were biomodified using Thrombin Binding Aptamer (TBA-15) probe with the final objective to sense thrombin by electrical detection. In this work, the impact of the biomodification on the electrical properties of the Si NN-FETs was studied. First, the results that were obtained for the optimization of the (3-Glycidyloxypropyl)trimethoxysilane (GOPS)-based biofunctionalization process by using UV radiation are reported.
View Article and Find Full Text PDFThis work reports on the label-free electrical detection of DNA molecules for the first time, using silicon carbide (SiC) as a novel material for the realization of nanowire field effect transistors (NWFETs). SiC is a promising semiconductor for this application due to its specific characteristics such as chemical inertness and biocompatibility. Non-intentionally n-doped SiC NWs are first grown using a bottom-up vapor-liquid-solid (VLS) mechanism, leading to the NWs exhibiting needle-shaped morphology, with a length of approximately 2 μm and a diameter ranging from 25 to 60 nm.
View Article and Find Full Text PDFNanoporous SnO2 thin films were elaborated to serve as sensing electrodes for label-free DNA detection using electrochemical impedance spectroscopy (EIS). Films were deposited by an electrodeposition process (EDP). Then the non-Faradic EIS behaviour was thoroughly investigated during some different steps of functionalization up to DNA hybridization.
View Article and Find Full Text PDFOptical sensors based on fluorescence methods are used in numerous areas of society, ranging from healthcare to environmental monitoring. But the race to elaborate portable and highly sensitive detection systems leads to the huge development of nanomaterial-based sensors. Here, we have fabricated a silicon nanonet, or silicon nanowire (SiNW) network, -based biosensor for DNA hybridization detection by fluorescence microscopy.
View Article and Find Full Text PDFThe bio-functionalization process consisting in grafting desoxyribo nucleic acid via aminopropyl-triethoxysilane is performed on several kinds of silicon carbide nanostructures. Prior, the organic layer is characterized on planar surface with fluorescence microscopy and X-ray photoelectron spectroscopy. Then, the functionalization is performed on two kinds of nanopillar arrays.
View Article and Find Full Text PDFThis paper reports on the preparation of silver/antimony-doped tin oxide (Ag/SnO(2):Sb) hybrid interfaces using magnetron sputtering and their characterization. The influence of the Sn target composition (doping with 2 or 5% Sb) on the electrochemical and electrical characteristics of the hybrid interface was investigated using X-ray photoelectron spectroscopy (XPS), sheet resistance measurements, cyclic voltammetry, scanning tunneling microscopy (STM) and surface plasmon resonance (SPR). The best interface in terms of electrical conductivity and SPR signal is a hybrid interface with a 8.
View Article and Find Full Text PDFThe use of Au/SiO(x) interfaces for the investigation of DNA hybridization using electrochemical impedance spectroscopy (EIS) and surface plasmon resonance (SPR) simultaneously is demonstrated. Standard glass chemistry was used to link single-stranded DNA (ss-DNA) on aldehyde-terminated Au/SiO(x) interfaces. The layer thickness and amount of grafted oligonucleotides (ODNs) were calculated from SPR on the basis of a multilayer system of glass/Ti/Au/SiO(x)/grafted molecule.
View Article and Find Full Text PDFBiosens Bioelectron
August 2006
DNA functionalised semiconductor metallic oxide electrodes have been developed for the direct electrochemical detection of DNA hybridization, without labelling or the introduction of a redox couple. Conductive CdIn(2)O(4) thin films with controlled properties were deposited on glass substrates using an aerosol pyrolysis technique. The films exhibit a polycrystalline microstructure with a surface roughness of 1.
View Article and Find Full Text PDF