Publications by authors named "Stamatoyannopoulos J"

Gene regulation is essential to placental function and fetal development. We built a genome-scale transcriptional regulatory network (TRN) of the human placenta using digital genomic footprinting and transcriptomic data. We integrated 475 transcriptomes and 12 DNase hypersensitivity datasets from placental samples to globally and quantitatively map transcription factor (TF)-target gene interactions.

View Article and Find Full Text PDF

The majority of disease-associated variants identified through genome-wide association studies are located outside of protein-coding regions. Prioritizing candidate regulatory variants and gene targets to identify potential biological mechanisms for further functional experiments can be challenging. To address this challenge, we developed FORGEdb ( https://forgedb.

View Article and Find Full Text PDF
Article Synopsis
  • - This study identifies over 13 million interactions between transcriptional enhancers and their target genes across various cell types and tissues, which is crucial for understanding how gene regulation influences diseases.
  • - Utilizing a new predictive model called ENCODE-rE2G, the researchers achieved high accuracy in predicting enhancer-gene interactions, supported by a robust dataset from CRISPR experiments and genetic mapping.
  • - The findings highlight not only the role of enhancers and their contacts with promoters but also additional factors like promoter types and enhancer interactions that affect gene regulation, creating a detailed resource for future genetic research.
View Article and Find Full Text PDF

Complex disorders are caused by a combination of genetic, environmental and lifestyle factors, and their prevalence can vary greatly across different populations. The extent to which genetic risk, as identified by Genome Wide Association Study (GWAS), correlates to disease prevalence in different populations has not been investigated systematically. Here, we studied 14 different complex disorders and explored whether polygenic risk scores (PRS) based on current GWAS correlate to disease prevalence within Europe and around the world.

View Article and Find Full Text PDF
Article Synopsis
  • Tourette syndrome (TS) is a neurodevelopmental disorder that typically begins in childhood, characterized by persistent motor and vocal tics lasting over a year.
  • A genome-wide meta-analysis was conducted with a total of 6,133 TS individuals and 13,565 controls, revealing a significant genetic locus on chromosome 5q15 linked to the NR2F1 gene.
  • The study found connections between genetic markers and brain tissue, particularly implicating brain volume differences in areas such as the thalamus and putamen, paving the way for further research into TS neurobiology.
View Article and Find Full Text PDF

Genetic association studies of many heritable traits resulting from physiological testing often have modest sample sizes due to the cost and burden of the required phenotyping. This reduces statistical power and limits discovery of multiple genetic associations. We present a strategy to leverage pleiotropy between traits to both discover new loci and to provide mechanistic hypotheses of the underlying pathophysiology.

View Article and Find Full Text PDF

The genetic basis of most traits is highly polygenic and dominated by non-coding alleles. It is widely assumed that such alleles exert small regulatory effects on the expression of -linked genes. However, despite the availability of gene expression and epigenomic datasets, few variant-to-gene links have emerged.

View Article and Find Full Text PDF

Trade and colonization caused an unprecedented increase in Mediterranean human mobility in the first millennium BCE. Often seen as a dividing force, warfare is in fact another catalyst of culture contact. We provide insight into the demographic dynamics of ancient warfare by reporting genome-wide data from fifth-century soldiers who fought for the army of the Greek Sicilian colony of Himera, along with representatives of the civilian population, nearby indigenous settlements, and 96 present-day individuals from Italy and Greece.

View Article and Find Full Text PDF

Background: The coronavirus disease 2019 (COVID-19) pandemic is dominated by variant viruses; the resulting impact on disease severity remains unclear. Using a retrospective cohort study, we assessed the hospitalization risk following infection with 7 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants.

Methods: Our study includes individuals with positive SARS-CoV-2 reverse transcription polymerase chain reaction (RT-PCR) in the Washington Disease Reporting System with available viral genome data, from 1 December 2020 to 14 January 2022.

View Article and Find Full Text PDF
Article Synopsis
  • Advances in conformation capture techniques have shifted our understanding of chromatin architecture, revealing a need to study nanoscale organization and cell-to-cell variance.
  • Analysis of genome-wide data from 733 samples identified two distinct chromatin regions that display either high or low sensitivity to DNase I, linked to active and inactive regulatory functions.
  • Measurements of chromatin distance distributions in the K562 cell line showed unexpected variability between active and inactive regions, suggesting differences in nucleosome interaction and occupancy that affect gene regulation.
View Article and Find Full Text PDF

Background: Genome-wide association study (GWAS) single nucleotide polymorphisms (SNPs) are known to preferentially co-locate to active regulatory elements in tissues and cell types relevant to disease aetiology. Further characterisation of associated cell type-specific regulation can broaden our understanding of how GWAS signals may contribute to disease risk.

Results: To gain insight into potential functional mechanisms underlying GWAS associations, we developed FORGE2 ( https://forge2.

View Article and Find Full Text PDF

Lineage commitment and differentiation is driven by the concerted action of master transcriptional regulators at their target chromatin sites. Multiple efforts have characterized the key transcription factors (TFs) that determine the various hematopoietic lineages. However, the temporal interactions between individual TFs and their chromatin targets during differentiation and how these interactions dictate lineage commitment remains poorly understood.

View Article and Find Full Text PDF

Background: The COVID-19 pandemic is dominated by variant viruses; the resulting impact on disease severity remains unclear. Using a retrospective cohort study, we assessed the hospitalization risk following infection with seven SARS-CoV-2 variants.

Methods: Our study includes individuals with positive SARS-CoV-2 RT-PCR in the Washington Disease Reporting System with available viral genome data, from December 1, 2020 to January 14, 2022.

View Article and Find Full Text PDF

Background: Myasthenia gravis (MG) is a rare autoimmune disorder affecting the neuromuscular junction (NMJ). Here, we investigate the genetic architecture of MG via a genome-wide association study (GWAS) of the largest MG data set analysed to date.

Methods: We performed GWAS meta-analysis integrating three different data sets (total of 1401 cases and 3508 controls).

View Article and Find Full Text PDF

Functional assessment of disease-associated sequence variation at non-coding regulatory elements is complicated by their high degree of context sensitivity to both the local chromatin and nuclear environments. Allelic profiling of DNA accessibility across individuals has shown that only a select minority of sequence variation affects transcription factor (TF) occupancy, yet low sequence diversity in human populations means that no experimental assessment is available for the majority of disease-associated variants. Here we describe high-resolution in vivo maps of allelic DNA accessibility in liver, kidney, lung and B cells from 5 increasingly diverged strains of F1 hybrid mice.

View Article and Find Full Text PDF

T cell development is restricted to the thymus and is dependent on high levels of Notch signaling induced within the thymic microenvironment. To understand Notch function in thymic restriction, we investigated the basis for target gene selectivity in response to quantitative differences in Notch signal strength, focusing on the chromatin architecture of genes essential for T cell differentiation. We find that high Notch signal strength is required to activate promoters of known targets essential for T cell commitment, including Il2ra, Cd3ε, and Rag1, which feature low CpG content (LCG) and DNA inaccessibility in hematopoietic stem progenitor cells.

View Article and Find Full Text PDF

Combinatorial binding of transcription factors to regulatory DNA underpins gene regulation in all organisms. Genetic variation in regulatory regions has been connected with diseases and diverse phenotypic traits, but it remains challenging to distinguish variants that affect regulatory function. Genomic DNase I footprinting enables the quantitative, nucleotide-resolution delineation of sites of transcription factor occupancy within native chromatin.

View Article and Find Full Text PDF

The human and mouse genomes contain instructions that specify RNAs and proteins and govern the timing, magnitude, and cellular context of their production. To better delineate these elements, phase III of the Encyclopedia of DNA Elements (ENCODE) Project has expanded analysis of the cell and tissue repertoires of RNA transcription, chromatin structure and modification, DNA methylation, chromatin looping, and occupancy by transcription factors and RNA-binding proteins. Here we summarize these efforts, which have produced 5,992 new experimental datasets, including systematic determinations across mouse fetal development.

View Article and Find Full Text PDF
Perspectives on ENCODE.

Nature

July 2020

The Encylopedia of DNA Elements (ENCODE) Project launched in 2003 with the long-term goal of developing a comprehensive map of functional elements in the human genome. These included genes, biochemical regions associated with gene regulation (for example, transcription factor binding sites, open chromatin, and histone marks) and transcript isoforms. The marks serve as sites for candidate cis-regulatory elements (cCREs) that may serve functional roles in regulating gene expression.

View Article and Find Full Text PDF

DNase I hypersensitive sites (DHSs) are generic markers of regulatory DNA and contain genetic variations associated with diseases and phenotypic traits. We created high-resolution maps of DHSs from 733 human biosamples encompassing 438 cell and tissue types and states, and integrated these to delineate and numerically index approximately 3.6 million DHSs within the human genome sequence, providing a common coordinate system for regulatory DNA.

View Article and Find Full Text PDF
Article Synopsis
  • Gene regulation is mainly influenced by the structure of individual chromatin molecules, but most studies have focused on broad samples rather than on specific molecules.
  • Researchers created a new method called Fiber-seq to capture the precise structure of single chromatin fibers by using DNA methyltransferases for detailed analysis.
  • This technique revealed significant flexibility in how chromatin fibers are organized and provided insights into how regulatory elements interact, nucleosomes are positioned, and transcription factors bind.
View Article and Find Full Text PDF

The human genome encodes millions of regulatory elements, of which only a small fraction are active within a given cell type. Little is known about the global impact of chromatin remodelers on regulatory DNA landscapes and how this translates to gene expression. We use precision genome engineering to reawaken homozygously inactivated SMARCA4, a central ATPase of the human SWI/SNF chromatin remodeling complex, in lung adenocarcinoma cells.

View Article and Find Full Text PDF