Purpose: To develop a general framework for parallel imaging (PI) with the use of Maxwell regularization for the estimation of the sensitivity maps (SMs) and constrained optimization for the parameter-free image reconstruction.
Theory And Methods: Certain characteristics of both the SMs and the images are routinely used to regularize the otherwise ill-posed optimization-based joint reconstruction from highly accelerated PI data. In this paper, we rely on a fundamental property of SMs-they are solutions of Maxwell equations-we construct the subspace of all possible SM distributions supported in a given field-of-view, and we promote solutions of SMs that belong in this subspace.
IEEE Trans Image Process
March 2019
Modern digital cameras rely on the sequential execution of separate image processing steps to produce realistic images. The first two steps are usually related to denoising and demosaicking where the former aims to reduce noise from the sensor and the latter converts a series of light intensity readings to color images. Modern approaches try to jointly solve these problems, i.
View Article and Find Full Text PDFThis paper presents and analyzes an alternative formulation of the locally low-rank (LLR) regularization framework for magnetic resonance image (MRI) reconstruction. Generally, LLR-based MRI reconstruction techniques operate by dividing the underlying image into a collection of matrices formed from image patches. Each of these matrices is assumed to have low rank due to the inherent correlations among the data, whether along the coil, temporal, or multi-contrast dimensions.
View Article and Find Full Text PDFIn this paper we introduce a new reconstruction algorithm for X-ray differential phase-contrast Imaging (DPCI). Our approach is based on 1) a variational formulation with a weighted data term and 2) a variable-splitting scheme that allows for fast convergence while reducing reconstruction artifacts. In order to improve the quality of the reconstruction we take advantage of higher-order total-variation regularization.
View Article and Find Full Text PDFIEEE Trans Image Process
November 2013
Poisson inverse problems arise in many modern imaging applications, including biomedical and astronomical ones. The main challenge is to obtain an estimate of the underlying image from a set of measurements degraded by a linear operator and further corrupted by Poisson noise. In this paper, we propose an efficient framework for Poisson image reconstruction, under a regularization approach, which depends on matrix-valued regularization operators.
View Article and Find Full Text PDFWe introduce a novel family of invariant, convex, and non-quadratic functionals that we employ to derive regularized solutions of ill-posed linear inverse imaging problems. The proposed regularizers involve the Schatten norms of the Hessian matrix, which are computed at every pixel of the image. They can be viewed as second-order extensions of the popular total-variation (TV) semi-norm since they satisfy the same invariance properties.
View Article and Find Full Text PDFIEEE Trans Image Process
March 2012
We present nonquadratic Hessian-based regularization methods that can be effectively used for image restoration problems in a variational framework. Motivated by the great success of the total-variation (TV) functional, we extend it to also include second-order differential operators. Specifically, we derive second-order regularizers that involve matrix norms of the Hessian operator.
View Article and Find Full Text PDFWe present an improved statistical model for analyzing Poisson processes, with applications to photon-limited imaging. We build on previous work, adopting a multiscale representation of the Poisson process in which the ratios of the underlying Poisson intensities (rates) in adjacent scales are modeled as mixtures of conjugate parametric distributions. Our main contributions include: 1) a rigorous and robust regularized expectation-maximization (EM) algorithm for maximum-likelihood estimation of the rate-ratio density parameters directly from the noisy observed Poisson data (counts); 2) extension of the method to work under a multiscale hidden Markov tree model (HMT) which couples the mixture label assignments in consecutive scales, thus modeling interscale coefficient dependencies in the vicinity of image edges; 3) exploration of a 2-D recursive quad-tree image representation, involving Dirichlet-mixture rate-ratio densities, instead of the conventional separable binary-tree image representation involving beta-mixture rate-ratio densities; and 4) a novel multiscale image representation, which we term Poisson-Haar decomposition, that better models the image edge structure, thus yielding improved performance.
View Article and Find Full Text PDF