Life-threatening bacterial infections in women after childbirth, known as puerperal sepsis, resulted in classical epidemics and remain a global health problem. While outbreaks of puerperal sepsis have been ascribed to Streptococcus pyogenes, little is known about disease mechanisms. Here, we show that the bacterial R28 protein, which is epidemiologically associated with outbreaks of puerperal sepsis, specifically targets the human receptor CEACAM1.
View Article and Find Full Text PDFThe M protein of Streptococcus pyogenes, a major bacterial virulence factor, has an amino-terminal hypervariable region (HVR) that is a target for type-specific protective antibodies. Intriguingly, the HVR elicits a weak antibody response, indicating that it escapes host immunity by two mechanisms, sequence variability and weak immunogenicity. However, the properties influencing the immunogenicity of regions in an M protein remain poorly understood.
View Article and Find Full Text PDFMany pathogens express a surface protein that binds the human complement regulator factor H (FH), as first described for Streptococcus pyogenes and the antiphagocytic M6 protein. It is commonly assumed that FH recruited to an M protein enhances virulence by protecting the bacteria against complement deposition and phagocytosis, but the role of FH-binding in S. pyogenes pathogenesis has remained unclear and controversial.
View Article and Find Full Text PDFSequence variation of antigenic proteins allows pathogens to evade antibody attack. The variable protein commonly includes a hypervariable region (HVR), which represents a key target for antibodies and is therefore predicted to be immunodominant. To understand the mechanism(s) of antibody evasion, we analyzed the clinically important HVR-containing M proteins of the human pathogen Streptococcus pyogenes.
View Article and Find Full Text PDFThe surface-localized M protein of Streptococcus pyogenes is a major virulence factor that inhibits phagocytosis, as determined ex vivo. Because little is known about the role of M protein in vivo we analyzed the contribution of different M protein regions to virulence, using the fibrinogen (Fg)-binding M5 protein and a mouse model of acute invasive infection. This model was suitable, because M5 is required for mouse virulence and binds mouse and human Fg equally well, as shown here.
View Article and Find Full Text PDFIdentification of antigens that elicit protective immunity is essential for effective vaccine development. We investigated the related surface proteins of group B Streptococcus, Rib and alpha, as potential vaccine candidates. Paradoxically, nonimmunodominant regions proved to be of particular interest as vaccine components.
View Article and Find Full Text PDFArch Dis Child Fetal Neonatal Ed
November 2006
Background: Infection with group B streptococci (GBS) is a serious neonatal disease. The GBS cell surface proteins alpha and Rib elicit protective immunity in animal models and have been suggested as potential antigens in a vaccine against human GBS disease.
Aims: To test the hypothesis that transplacentally transferred maternal antibodies to GBS proteins contribute to the protection of the neonate from GBS infection.
All living cells require specific mechanisms that target proteins to the cell surface. In eukaryotes, the first part of this process involves recognition in the endoplasmic reticulum of amino-terminal signal sequences and translocation through Sec translocons, whereas subsequent targeting to different surface locations is promoted by internal sorting signals. In bacteria, N-terminal signal sequences promote translocation across the cytoplasmic membrane, which surrounds the entire cell, but some proteins are nevertheless secreted in one part of the cell by poorly understood mechanisms.
View Article and Find Full Text PDFStreptococcus agalactiae (group B Streptococcus) is the major cause of invasive bacterial disease, including meningitis, in the neonatal period. Although prophylactic measures have contributed to a substantial reduction in the number of infections, development of a vaccine remains an important goal. While much work in this field has focused on the S.
View Article and Find Full Text PDFStreptococcus pyogenes (group A streptococcus) causes a variety of diseases, including acute pharyngitis, impetigo, rheumatic fever and the streptococcal toxic shock syndrome. Moreover, S. pyogenes was responsible for the classical example of a nosocomial infection, the epidemics of puerperal fever (childbed fever) that caused the death of numerous women in earlier centuries.
View Article and Find Full Text PDFThe M protein of Streptococcus pyogenes is a major bacterial virulence factor that confers resistance to phagocytosis. To analyze how M protein allows evasion of phagocytosis, we used the M22 protein, which has features typical of many M proteins and has two well-characterized regions binding human plasma proteins: the hypervariable NH2-terminal region binds C4b-binding protein (C4BP), which inhibits the classical pathway of complement activation; and an adjacent semivariable region binds IgA-Fc. Characterization of chromosomal S.
View Article and Find Full Text PDFProline-rich regions have been identified in many surface proteins of pathogenic streptococci and staphylococci. These regions have been suggested to be located in cell wall-spanning domains and/or to be required for surface expression of the protein. Because little is known about these regions, which are found in extensively studied and biologically important surface proteins, we characterized the proline-rich region in one such protein, the beta protein of group B streptococci.
View Article and Find Full Text PDFThe group B streptococcus (GBS) is the most important cause of life-threatening bacterial infections in newborn infants. Protective immunity to GBS infection is elicited by several surface proteins, one of which, the beta protein, is known to bind human IgA-Fc. Here, we show that the beta protein also binds human factor H (FH), a negative regulator of complement activation.
View Article and Find Full Text PDFThe amino-terminal hypervariable region (HVR) of streptococcal M protein is required for the ability of this virulence factor to confer phagocytosis resistance. The function of the HVR has remained unknown, but the finding that many HVRs with extremely divergent sequences bind the human complement regulator C4b-binding protein (C4BP) has suggested that this ligand may play a role in phagocytosis resistance. We used the M22 system to study the function of bound C4BP and provide several lines of evidence that C4BP indeed contributes to phagocytosis resistance.
View Article and Find Full Text PDFThe R28 protein of group A streptococcus (GAS) and the Rib protein of group B streptococcus (GBS) are surface molecules that elicit protective immunity to experimental infection. These proteins are members of the same family and cross-react immunologically. In spite of extensive amino acid residue identity, the cross-reactivity between R28 and Rib was found to be limited, as shown by analysis with highly purified proteins and specific antisera.
View Article and Find Full Text PDFStrains of group B streptococcus (GBS) express surface proteins that confer protective immunity. In particular, most strains of the four classical capsular serotypes (Ia, Ib, II, and III) express either of the Rib and alpha proteins, two members of the same protein family. Here, we report a study of surface proteins expressed by strains of serotype V, which has recently emerged as an important serotype among GBS strains causing serious disease.
View Article and Find Full Text PDFThe R28 protein is a surface molecule expressed by some strains of Streptococcus pyogenes (group A streptococcus). Here, we present evidence that R28 may play an important role in virulence. Sequence analysis demonstrated that R28 has an extremely repetitive sequence and can be viewed as a chimera derived from the three surface proteins Rib, alpha and beta of the group B streptococcus (GBS).
View Article and Find Full Text PDFGroup B streptococcus (GBS), a bacterium with polysaccharide capsule, is the major cause of sepsis and meningitis in early infancy. Recent work has indicated that immunity to GBS infection can be elicited by the surface proteins Rib and alpha, either of which is expressed by most GBS strains causing invasive infections. Here we show that a bivalent vaccine, composed of purified Rib and alpha mixed with aluminum hydroxide (alum), an adjuvant accepted for human use, elicits an antibody response to each of the two antigens.
View Article and Find Full Text PDFEncapsulated bacteria cause some of the most common diseases in humans. Although the polysaccharide capsules of these pathogens have attracted the most attention with regard to vaccine development, recent evidence suggests that bacterial surface proteins may also be used to confer protective immunity. We have analyzed this possibility in group B streptococcus (GBS), an encapsulated bacterium that is the major cause of invasive bacterial disease in the neonatal period.
View Article and Find Full Text PDFThe group B Streptococcus (GBS) causes the majority of life-threatening bacterial infections in newborn children. Most GBS strains isolated from such infections express a surface protein, designated Rib, that confers protective immunity and therefore is of interest for analysis of pathogenetic mechanisms. Sequence analysis demonstrated that Rib has an exceptionally long signal peptide (55 amino acid residues) and 12 repeats (79 amino acid residues each) that account for >80% of the sequence of the mature protein.
View Article and Find Full Text PDFThe group B Streptococcus, an important cause of invasive infections in the neonate, is classified into four major serotypes (Ia, Ib, II, and III) based on the structure of the polysaccharide capsule. Since the capsule is a known virulence factor, it has been extensively studied, in particular in type III strains, which cause the majority of invasive infections. Two cell surface proteins, alpha and beta, have also been studied in detail since they confer protective immunity, but these proteins are usually not expressed by type III strains.
View Article and Find Full Text PDFNine strains of Borrelia burgdorferi isolated from ticks in the canton of Valais (Switzerland) were characterized genotypically by determining restriction fragment length polymorphisms (RFLP) and plasmid profiles. The strains were also compared with respect to presence and electrophoretic mobility of the outer surface proteins OspA and OspB, and immunoreactivity of OspA and a 12 kD antigen. By both approaches, three different patterns were observed resulting in identical grouping of the strains.
View Article and Find Full Text PDF