Publications by authors named "Staiger J"

Cortical neurons in brain slices display intrinsic spike frequency adaptation (I-SFA) to constant current inputs, while extracellular recordings show extrinsic SFA (E-SFA) during sustained visual stimulation. Inferring how I-SFA contributes to E-SFA during behavior is challenging due to the isolated nature of slice recordings. To address this, we recorded macaque lateral prefrontal cortex (LPFC) neurons in vivo during a visually guided saccade task and in vitro in brain slices.

View Article and Find Full Text PDF

Enrichment of basal progenitors (BPs) in the developing neocortex is a central driver of cortical enlargement. The transcription factor Pax6 is known as an essential regulator in generation of BPs. H3 lysine 9 acetylation (H3K9ac) has emerged as a crucial epigenetic mechanism that activates the gene expression program required for BP pool amplification.

View Article and Find Full Text PDF

In mammalian neocortex development, every cohort of newborn neurons is guided toward the marginal zone, leading to an "inside-out" organization of the 6 neocortical layers. This migratory pattern is regulated by the extracellular glycoprotein Reelin. The reeler mouse shows a homozygous mutation of the reelin gene.

View Article and Find Full Text PDF

Since more than a century, neuroscientists have distinguished excitatory (glutamatergic) neurons with long-distance projections from inhibitory (GABAergic) neurons with local projections and established layer-dependent schemes for the ~ 80% excitatory (principal) cells as well as the ~ 20% inhibitory neurons. Whereas, in the early days, mainly morphological criteria were used to define cell types, later supplemented by electrophysiological and neurochemical properties, nowadays. single-cell transcriptomics is the method of choice for cell type classification.

View Article and Find Full Text PDF

Parvalbumin-expressing (PV) interneurons are key neuronal elements to a global excitatory-inhibitory balance in normal cortical functioning. To better understand the circuit functions of PV interneurons, reliable animal models are needed. This study investigated the sensitivity and specificity of the most frequently used PV-Cre/tdTomato mouse line in this regard.

View Article and Find Full Text PDF

BigNeuron is an open community bench-testing platform with the goal of setting open standards for accurate and fast automatic neuron tracing. We gathered a diverse set of image volumes across several species that is representative of the data obtained in many neuroscience laboratories interested in neuron tracing. Here, we report generated gold standard manual annotations for a subset of the available imaging datasets and quantified tracing quality for 35 automatic tracing algorithms.

View Article and Find Full Text PDF

The reeler mouse mutant has long served as a primary model to study the development of cortical layers, which is governed by the extracellular glycoprotein reelin secreted by Cajal-Retzius cells. Because layers organize local and long-range circuits for sensory processing, we investigated whether intracortical connectivity is compromised by reelin deficiency in this model. We generated a transgenic reeler mutant (we used both sexes), in which layer 4-fated spiny stellate neurons are labeled with tdTomato and applied slice electrophysiology and immunohistochemistry with synaptotagmin-2 to study the circuitry between the major thalamorecipient cell types, namely excitatory spiny stellate and inhibitory fast-spiking (putative basket) cells.

View Article and Find Full Text PDF

GABAergic interneurons represent ∼15% to 20% of all cortical neurons, but their diversity grants them unique roles in cortical circuits. In the barrel cortex, responses of excitatory neurons to stimulation of facial whiskers are direction selective, whereby excitation is maximized over a narrow range of angular deflections. Whether GABAergic interneurons are also direction selective is unclear.

View Article and Find Full Text PDF

Reelin is a large extracellular glycoprotein that is secreted by Cajal-Retzius cells during embryonic development to regulate neuronal migration and cell proliferation but it also seems to regulate ion channel distribution and synaptic vesicle release properties of excitatory neurons well into adulthood. Mouse mutants with a compromised reelin signaling cascade show a highly disorganized neocortex but the basic connectional features of the displaced excitatory principal cells seem to be relatively intact. Very little is known, however, about the intrinsic electrophysiological and morphological properties of individual cells in the reeler cortex.

View Article and Find Full Text PDF

Early forebrain patterning entails the correct regional designation of the neuroepithelium, and appropriate specification, generation, and distribution of neural cells during brain development. Specific signaling and transcription factors are known to tightly regulate patterning of the dorsal telencephalon to afford proper structural/functional cortical arealization and morphogenesis. Nevertheless, whether and how changes of the chromatin structure link to the transcriptional program(s) that control cortical patterning remains elusive.

View Article and Find Full Text PDF

Fast oscillations in cortical circuits critically depend on GABAergic interneurons. Which interneuron types and populations can drive different cortical rhythms, however, remains unresolved and may depend on brain state. Here, we measured the sensitivity of different GABAergic interneurons in prefrontal cortex under conditions mimicking distinct brain states.

View Article and Find Full Text PDF

Glucose is the mandatory fuel for the brain, yet the relative contribution of glucose and lactate for neuronal energy metabolism is unclear. We found that increased lactate, but not glucose concentration, enhances the spiking activity of neurons of the cerebral cortex. Enhanced spiking was dependent on ATP-sensitive potassium (K) channels formed with KCNJ11 and ABCC8 subunits, which we show are functionally expressed in most neocortical neuronal types.

View Article and Find Full Text PDF

Increase in the size of human neocortex―acquired in evolution―accounts for the unique cognitive capacity of humans. This expansion reflects the evolutionarily enhanced proliferative ability of basal progenitors (BPs), including the basal radial glia and basal intermediate progenitors (bIPs) in mammalian cortex, which may have been acquired through epigenetic alterations in BPs. However, how the epigenome in BPs differs across species is not known.

View Article and Find Full Text PDF

Oligodendrocytes are responsible for axon myelination in the brain and spinal cord. Generation of oligodendrocytes entails highly regulated multistage neurodevelopmental events, including proliferation, differentiation and maturation. The chromatin remodeling BAF (mSWI/SNF) complex is a notable regulator of neural development.

View Article and Find Full Text PDF

Radial neuronal migration is a key neurodevelopmental event indispensable for proper cortical laminar organization. Cortical neurons mainly use glial fiber guides, cell adhesion dynamics, and cytoskeletal remodeling, among other discrete processes, to radially trek from their birthplace to final layer positions. Dysregulated radial migration can engender cortical mis-lamination, leading to neurodevelopmental disorders.

View Article and Find Full Text PDF

Identification of peptides mediating protein-protein interaction (PPI) is crucial for understanding the function of interlinked proteins in cellular processes and amino acid-associated diseases. Traditional PPI assays are laborious, involving the generation of many truncated proteins. SPOT peptide assay allows high-throughput detection of domains essential for PPI by synthesizing several hundred peptides on a cellulose membrane.

View Article and Find Full Text PDF

Intermediate progenitor cells (IPCs) are neocortical neuronal precursors. Although IPCs play crucial roles in corticogenesis, their molecular features remain largely unknown. In this study, we aimed to characterize the molecular profile of IPCs.

View Article and Find Full Text PDF

Cortical morphogenesis entails several neurobiological events, including proliferation and differentiation of progenitors, migration of neuroblasts, and neuronal maturation leading to functional neural circuitry. These neurodevelopmental processes are delicately regulated by many factors. Endosomal SNAREs have emerged as formidable modulators of neuronal growth, aside their well-known function in membrane/vesicular trafficking.

View Article and Find Full Text PDF

Critical periods (CPs) are time windows of heightened brain plasticity during which experience refines synaptic connections to achieve mature functionality. At glutamatergic synapses on dendritic spines of principal cortical neurons, the maturation is largely governed by postsynaptic density protein-95 (PSD-95)-dependent synaptic incorporation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors into nascent AMPA-receptor silent synapses. Consequently, in mouse primary visual cortex (V1), impaired silent synapse maturation in PSD-95-deficient neurons prevents the closure of the CP for juvenile ocular dominance plasticity (jODP).

View Article and Find Full Text PDF

Fine-tuned gene expression is crucial for neurodevelopment. The gene expression program is tightly controlled at different levels, including RNA decay. N-methyladenosine (m6A) methylation-mediated degradation of RNA is essential for brain development.

View Article and Find Full Text PDF

The axon initial segment (AIS) is a critical microdomain for action potential initiation and implicated in the regulation of neuronal excitability during activity-dependent plasticity. While structural AIS plasticity has been suggested to fine-tune neuronal activity when network states change, whether it acts in vivo as a homeostatic regulatory mechanism in behaviorally relevant contexts remains poorly understood. Using the mouse whisker-to-barrel pathway as a model system in combination with immunofluorescence, confocal analysis and electrophysiological recordings, we observed bidirectional AIS plasticity in cortical pyramidal neurons.

View Article and Find Full Text PDF

The neocortex is composed of layers. Whether layers constitute an essential framework for the formation of functional circuits is not well understood. We investigated the brain-wide input connectivity of vasoactive intestinal polypeptide (VIP) expressing neurons in the reeler mouse.

View Article and Find Full Text PDF

Activation of GABA receptors causes in immature neurons a functionally relevant decrease in the intracellular Cl concentration ([Cl]), a process termed ionic plasticity. Amount and duration of ionic plasticity depends on kinetic properties of [Cl] homeostasis. In order to characterize the capacity of Cl accumulation and to quantify the effect of persistent GABAergic activity on [Cl], we performed gramicidin-perforated patch-clamp recordings from CA3 pyramidal neurons of immature (postnatal day 4-7) rat hippocampal slices.

View Article and Find Full Text PDF