Lipid metabolism is closely involved with signal transduction and energy homeostasis. Excess calorie intake causes abnormal lipid metabolism, promoting obesity and insulin resistance. Diacylglycerol (DG) represents not only a lipidic second messenger but also an intermediate metabolite for triglyceride metabolism in the endoplasmic reticulum (ER).
View Article and Find Full Text PDFThis chapter is focused on the role of the plasma form of platelet-activating factor-acetylhydrolase (PAF-AH), heretofore referred to as PAF-AH, in tumorigenic responses. Biochemical and other properties of this enzyme were discussed in detail in chapter "Plasma PAF-AH (PLA2G7): Biochemical Properties, Association with LDLs and HDLs, and Regulation of Expression" by Stafforini and in other chapters. Although phospholipases tend not to be drivers of tumorigenesis themselves, these enzymes and the lipid mediators whose levels they regulate interact with a variety of oncogenes and tumor suppressors [1].
View Article and Find Full Text PDFThis chapter is focused on the plasma form of PAF-acetylhydrolase (PAF-AH), a lipoprotein-bound, calcium-independent phospholipase A2 activity also referred to as lipoprotein-associated phospholipase A2 and PLA2G7. PAF-AH catalyzes the removal of the acyl group at the sn-2 position of PAF and truncated phospholipids generated in settings of inflammation and oxidant stress. Here, I discuss current knowledge related to the structural features of this enzyme, including the molecular basis for association with lipoproteins and susceptibility to oxidative inactivation.
View Article and Find Full Text PDFTargeted therapies and the consequent adoption of "personalized" oncology have achieved notable successes in some cancers; however, significant problems remain with this approach. Many targeted therapies are highly toxic, costs are extremely high, and most patients experience relapse after a few disease-free months. Relapses arise from genetic heterogeneity in tumors, which harbor therapy-resistant immortalized cells that have adopted alternate and compensatory pathways (i.
View Article and Find Full Text PDFCancers harbor significant genetic heterogeneity and patterns of relapse following many therapies are due to evolved resistance to treatment. While efforts have been made to combine targeted therapies, significant levels of toxicity have stymied efforts to effectively treat cancer with multi-drug combinations using currently approved therapeutics. We discuss the relationship between tumor-promoting inflammation and cancer as part of a larger effort to develop a broad-spectrum therapeutic approach aimed at a wide range of targets to address this heterogeneity.
View Article and Find Full Text PDFACSL4 is a member of the long-chain acyl-CoA synthetase (ACSL) family with a marked preference for arachidonic acid (AA) as its substrate. Although an association between elevated levels of ACSL4 and hepatosteatosis has been reported, the function of ACSL4 in hepatic FA metabolism and the regulation of its functional expression in the liver remain poorly defined. Here we provide evidence that AA selectively downregulates ACSL4 protein expression in hepatic cells.
View Article and Find Full Text PDFCurrent evidence indicates that dysregulation of the host inflammatory response to infectious agents is central to the mortality of patients with sepsis. Strategies to block inflammatory mediators such as PAF have been investigated as adjuvant therapies for sepsis. PAF-AH, the enzyme responsible for PAF degradation, showed positive results in pre-clinical studies and phase II clinical trials, but the results of a phase III study were disappointing.
View Article and Find Full Text PDFIFN-ε is a unique type I IFN whose constitutive expression in lung, brain, small intestine, and reproductive tissues is only partially understood. Our previous observation that posttranscriptional events participate in the regulation of IFN-ε mRNA expression led us to investigate whether the 5' and/or 3' untranslated regions (UTR) have regulatory functions. Surprisingly, we found that full-length IFN-ε 5'UTR markedly suppressed mRNA expression under basal conditions.
View Article and Find Full Text PDFPurpose: Lung cancer is a leading cause of cancer deaths and efforts are underway to identify novel therapies to treat these tumors. Diacylglycerol kinase η (DGKη), an enzyme that phosphorylates diacylglycerol to form phosphatidic acid, has been shown to modulate MAPK signaling downstream of EGFR, which is an oncogenic driver in some lung cancers. Since mutations in EGFR and K-Ras are common in lung cancer, we hypothesized that limiting the function of DGKη would attenuate oncogenic properties of lung cancer cells.
View Article and Find Full Text PDFPlatelet-activating factor (PAF) is a naturally occurring phospholipid that mediates diverse effects such as physiological and pathological inflammation, immunosuppression, and cancer. Several lines of evidence support both positive and negative roles for PAF in carcinogenesis. PAF stimulates cell growth, oncogenic transformation, and metastasis, but can also limit proliferation and induce apoptosis.
View Article and Find Full Text PDFDiscovering proteins that modulate Akt signaling has become a critical task, given the oncogenic role of Akt in a wide variety of cancers. We have discovered a novel diacylglycerol signaling pathway that promotes dephosphorylation of Akt. This pathway is regulated by diacylglycerol kinase δ (DGKδ).
View Article and Find Full Text PDFLipoprotein-associated phospholipase A(2) (Lp-PLA(2)), also known as platelet-activating factor acetylhydrolase (PAF-AH), is a unique member of the phospholipase A(2) superfamily. This enzyme is characterized by its ability to specifically hydrolyze PAF as well as glycerophospholipids containing short, truncated, and/or oxidized fatty acyl groups at the sn-2 position of the glycerol backbone. In humans, Lp-PLA(2) circulates in active form as a complex with low- and high-density lipoproteins.
View Article and Find Full Text PDFThis article presents a radiometric assay to determine the enzymatic activity of platelet-activating factor (PAF) acetylhydrolase (PAF-AH), also known as lipoprotein-associated phospholipase A2 and phospholipase A2 group 7A. The method is based on the release of radioactively labeled acetate from sn-2-labeled PAF and separation of substrate and product using reversed-phase column chromatography on octadecyl silica gel cartridges. The assay is fast, convenient, reproducible, sensitive, and inexpensive.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
December 2011
Sodium-hydrogen exchanger (NHE), the principal sarcolemmal acid extruder in ventricular myocytes, is stimulated by a variety of autocrine/paracrine factors and contributes to myocardial injury and arrhythmias during ischemia-reperfusion. Platelet-activating factor (PAF; 1-o-alkyl-2-acetyl-sn-glycero-3-phosphocholine) is a potent proinflammatory phospholipid that is released in the heart in response to oxidative stress and promotes myocardial ischemia-reperfusion injury. PAF stimulates NHE in neutrophils and platelets, but its effect on cardiac NHE (NHE1) is unresolved.
View Article and Find Full Text PDFAntiviral innate immunity is triggered by sensing viral nucleic acids. RIG-I (retinoic acid-inducible gene-I) is an intracellular molecule that responds to viral nucleic acids and activates downstream signaling, resulting in the induction of members of the type I interferon (IFN) family, which are regarded among the most important effectors of the innate immune system. Although RIG-I is expressed ubiquitously in the cytoplasm, its levels are subject to transcriptional and post-transcriptional regulation.
View Article and Find Full Text PDFHuman preterm infants with necrotizing enterocolitis (NEC) have increased circulating and luminal levels of platelet-activating factor (PAF) and decreased serum PAF-acetylhydrolase (PAF-AH), the enzyme that inactivates PAF. Formula supplemented with recombinant PAF-AH decreases NEC in a neonatal rat model. We hypothesized that endogenous PAF-AH contributes to neonatal intestinal homeostasis and therefore developed PAF-AH mice using standard approaches to study the role of this enzyme in the neonatal NEC model.
View Article and Find Full Text PDFBradykinin, a potent vasodilator, stimulates the formation of reactive oxygen species and F(2)-isoprostanes in vitro. The effect of bradykinin on oxidative stress in humans is not known. This study tested the hypothesis that bradykinin induces oxidative stress through a nitric oxide (NO)-dependent mechanism in the human vasculature.
View Article and Find Full Text PDFPrevious studies have shown that key enzymes involved in lipid metabolic pathways are differentially expressed in normal compared with tumor tissues. However, the precise role played by dysregulated expression of lipid metabolic enzymes and altered lipid homeostasis in carcinogenesis remains to be established. Fatty acid synthase is overexpressed in a variety of cancers, including breast and prostate.
View Article and Find Full Text PDFThe plasma form of PAF-AH [PAF (platelet-activating factor) acetylhydrolase; also known as LpPLA(2) (lipopoprotein-associated phospholipase A(2)), PLA(2)G7] catalyses the release of sn-2 fatty acyl residues from PAF, oxidatively fragmented phospholipids, and esterified isoprostanes. The plasma levels of this enzyme vary widely among mammalian species, including mice and humans, but the mechanisms that account for these differences are largely unknown. We investigated the basis for these variations using molecular and biochemical approaches.
View Article and Find Full Text PDFMany human epithelial cancers are characterized by abnormal activation of the epidermal growth factor receptor (EGFR), which is often caused by its excessive expression in tumor cells. The abundance of EGFR is modulated, in part, by its ubiquitination, which targets it for degradation. The components responsible for adding ubiquitin to EGFR are well characterized, but this is a reversible process, and the mechanisms that modulate the removal of ubiquitin from the EGFR are not well known.
View Article and Find Full Text PDFWe previously showed that plasminogen (Plg) isolated from the plasma of normal human subjects contains 1-2 moles of oxidized phosphatidylcholine (oxPtdPC) adducts/mole of protein. Moreover, we suggested that these species are generated at the hepatic site and speculated that they may play a role in the reported cardiovascular pathogenicity of Plg. We aimed to determine whether mouse Plg also harbors linked oxPtdPCs and whether these molecules are metabolized by lipoprotein-associated phospholipase A(2)/PAF acetylhydrolase (Lp-PLA(2)/PAF-AH), an enzyme specific for hydrolysis of oxPtdPCs.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2009
In the past several years a number of alterations in the PAFAH/PLA₂G7/LpPLA₂ gene have been described. These include inactivating mutations, polymorphisms in the coding region, and other genetic changes located in promoter and intronic regions of the gene. The consequences associated with these genetic variations have been evaluated from different perspectives, including in vitro biochemical and molecular studies and clinical analyses in human subjects.
View Article and Find Full Text PDFAberrant Wnt/beta-catenin signaling following loss of the tumor suppressor adenomatous polyposis coli (APC) is thought to initiate colon adenoma formation. Considerable evidence for this model has come from mouse models of Apc truncation where nuclear beta-catenin is detectable soon after loss of Apc. However, examination of tumors from familial adenomatous polyposis coli (FAP) patients has failed to confirm the presence of nuclear beta-catenin in early lesions following APC loss despite robust staining in later lesions.
View Article and Find Full Text PDF