Non-small cell lung cancer (NSCLC) has one of the highest cancer-related mortality rates worldwide. In a subgroup of NSCLC, tumor growth is driven by epidermal growth factor receptors (EGFR) that harbor an activating mutation. These patients are best treated with EGFR tyrosine kinase inhibitors (EGFR TKI).
View Article and Find Full Text PDFIntroduction: Epidermal growth factor receptor (EGFR) mutated NSCLC is best treated using an EGFR tyrosine kinase inhibitor (TKI). The presence and accessibility of EGFR overexpression and mutation in NSCLC can be determined using radiolabeled EGFR TKI PET/CT. However, recent research has shown a significant difference between image qualities (i.
View Article and Find Full Text PDFBackground: Patients with non-small cell lung cancer (NSCLC) driven by activating epidermal growth factor receptor (EGFR) mutations are best treated with therapies targeting EGFR, i.e., tyrosine kinase inhibitors (TKI).
View Article and Find Full Text PDFObjectives: Non-small cell lung cancer (NSCLC) tumors harboring common (exon19del, L858R) and uncommon (e.g. G719X, L861Q) activating epidermal growth factor receptor (EGFR) mutations are best treated with EGFR tyrosine kinase inhibitors (TKI) such as the first-generation EGFR TKI erlotinib, second-generation afatinib or third-generation osimertinib.
View Article and Find Full Text PDFIntroduction: Only a subgroup of non-small cell lung cancer (NSCLC) patients benefit from treatment using epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) such as afatinib. Tumour uptake of [F]afatinib using positron emission tomography (PET) may identify those patients that respond to afatinib therapy. Therefore, the aim of this study was to find the optimal tracer kinetic model for quantification of [F]afatinib uptake in NSCLC tumours.
View Article and Find Full Text PDF