Publications by authors named "Stacy Singer"

Pulses provide myriad health benefits and are advantageous in an environmental context as a result of their leguminous nature. However, phytopathogenic fungi, oomycetes and bacteria pose a substantial threat to pulse production, at times leading to crop failure. Unfortunately, existing disease management strategies often provide insufficient control, and there is a clear need for the development of new pulse cultivars with durable and broad-spectrum disease resistance.

View Article and Find Full Text PDF

Certain plants and microorganisms can produce high amounts of unusual fatty acids (UFAs) such as hydroxy, conjugated, cyclic, and very long-chain polyunsaturated fatty acids, which have distinct physicochemical properties and significant applications in the food, feed, and oleochemical industries. Since many natural sources of UFAs are not ideal for large-scale agricultural production or fermentation, it is attractive to produce them through synthetic biology. Although several UFAs have been commercially or pre-commercially produced in transgenic plants and microorganisms, their contents in transgenic hosts are generally much lower than in natural sources.

View Article and Find Full Text PDF

Cis-regulatory elements (CREs) are integral to the spatiotemporal and quantitative expression dynamics of target genes, thus directly influencing phenotypic variation and evolution. However, many of these CREs become highly susceptible to transcriptional silencing when in a transgenic state, particularly when organised as tandem repeats. We investigated the mechanism of this phenomenon and found that three of the six selected flower-specific CREs were prone to transcriptional silencing when in a transgenic context.

View Article and Find Full Text PDF

The global demand for animal-derived foods has led to a substantial expansion in ruminant production, which has raised concerns regarding methane emissions. To address these challenges, microalgal species that are nutritionally-rich and contain bioactive compounds in their biomass have been explored as attractive feed additives for ruminant livestock production. In this review, we discuss the different microalgal species used for this purpose in recent studies, and review the effects of microalgal feed supplements on ruminant growth, performance, health, and product quality, as well as their potential contributions in reducing methane emissions.

View Article and Find Full Text PDF

Alfalfa ( L.) is a widely grown perennial leguminous forage crop with a number of positive attributes. However, despite its moderate ability to tolerate saline soils, which are increasing in prevalence worldwide, it suffers considerable yield declines under these growth conditions.

View Article and Find Full Text PDF

CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) has become a breeding tool of choice for eliciting targeted genetic alterations in crop species as a means of improving a wide range of agronomic traits, including disease resistance, in recent years. With the recent development of CRISPR/Cas9 technology in Medicago sativa (alfalfa), which is an important perennial forage legume grown worldwide, its use for the enhancement of pathogen resistance is almost certainly on the horizon. In this chapter, we present detailed procedures for the generation of a single nonhomologous end-joining-derived indel at a precise genomic locus of alfalfa via CRISPR/Cas9.

View Article and Find Full Text PDF

Phosphatidylcholine has essential functions in many eukaryotic cells, and its de novo biosynthesis is rate-limited by cytidine triphosphate:phosphocholine cytidylyltransferase (CCT). Although the biological and biochemical functions of CCT have been reported in mammals and several plants, this key enzyme has yet to be examined at a genome-wide level. As such, certain fundamental questions remain unanswered, including the evolutionary history, genetic and functional relationships, and structural variations among CCTs in the green lineage.

View Article and Find Full Text PDF

Plant lipids have essential biological roles in plant development and stress responses through their functions in cell membrane formation, energy storage and signalling. Vegetable oil, which is composed mainly of the storage lipid triacylglycerol, also has important applications in food, biofuel and oleochemical industries. Lipid biosynthesis occurs in multiple subcellular compartments and involves the coordinated action of various pathways.

View Article and Find Full Text PDF

Insulators in vertebrates play a role in genome architecture and orchestrate temporo-spatial enhancer-promoter interactions. In plants, insulators and their associated binding factors have not been documented as of yet, largely as a result of a lack of characterized insulators. In this study, we took a comprehensive strategy to identify and validate the enhancer-blocking insulator CW198.

View Article and Find Full Text PDF

The expanding use of fossil fuels has caused concern in terms of both energy security and environmental issues. Therefore, attempts have been made worldwide to promote the development of renewable energy sources, among which biofuel is especially attractive. Compared to other biofuels, lipid-derived biofuels have a higher energy density and better compatibility with existing infrastructure, and their performance can be readily improved by adjusting the chemical composition of lipid feedstocks.

View Article and Find Full Text PDF

Alfalfa ( L.) is the most widely grown perennial leguminous forage and is an essential component of the livestock industry. Previously, the RNAi-mediated down-regulation of alfalfa () was found to lead to increased branching, regrowth and biomass, as well as enhanced drought tolerance.

View Article and Find Full Text PDF

Insulators characterized in Drosophila and mammals have been shown to play a key role in the restriction of promiscuous enhancer-promoter interactions, as well as reshaping the topological landscape of chromosomes. Yet the role of insulators in plants remains poorly understood, in large part because of a lack of well-characterized insulators and binding factor(s). In this study, we isolated a 1.

View Article and Find Full Text PDF

Alfalfa ( L.) is an extensively grown perennial forage legume, and although it is relatively drought tolerant, it consumes high amounts of water and depends upon irrigation in many regions. Given the progressive decline in water available for irrigation, as well as an escalation in climate change-related droughts, there is a critical need to develop alfalfa cultivars with improved drought resilience.

View Article and Find Full Text PDF

Punicic acid (PuA) is a high-value edible conjugated fatty acid with strong bioactivities and has important potential applications in nutraceutical, pharmaceutical, feeding, and oleochemical industries. Since the production of PuA is severely limited by the fact that its natural source (pomegranate seed oil) is not readily available on a large scale, there is considerable interest in understanding the biosynthesis and accumulation of this plant-based unusual fatty acid in transgenic microorganisms to support the rational design of biotechnological approaches for PuA production via fermentation. Here, we tested the effectiveness of genetic engineering and precursor supply in PuA production in the model yeast strain .

View Article and Find Full Text PDF

AIL7 over-expression modulates fatty acid biosynthesis and triacylglycerol accumulation in Arabidopsis developing seeds through the transcriptional regulation of associated genes. Seed fatty acids (FAs) and triacylglycerol (TAG) contribute to many functions in plants, and seed lipids have broad food, feed and industrial applications. As a result, an enormous amount of attention has been dedicated towards uncovering the regulatory cascade responsible for the fine-tuning of the lipid biosynthetic pathway in seeds, which is regulated in part through the action of LEAFY COTYLEDON1, ABSCISSIC ACID INSENSITIVE 3, FUSCA3 and LEC2 (LAFL) transcription factors.

View Article and Find Full Text PDF

Production of hydroxy fatty acids (HFAs) in transgenic crops represents a promising strategy to meet our demands for specialized plant oils with industrial applications. The expression of Ricinus communis (castor) OLEATE 12-HYDROXYLASE (RcFAH12) in Arabidopsis has resulted in only limited accumulation of HFAs in seeds, which probably results from inefficient transfer of HFAs from their site of synthesis (phosphatidylcholine; PC) to triacylglycerol (TAG), especially at the sn-1/3 positions of TAG. Phospholipase As (PLAs) may be directly involved in the liberation of HFAs from PC, but the functions of their over-expression in HFA accumulation and distribution at TAG in transgenic plants have not been well studied.

View Article and Find Full Text PDF

A continuous rise in demand for vegetable oils, which comprise mainly the storage lipid triacylglycerol, is fueling a surge in research efforts to increase seed oil content and improve fatty acid composition in oilseed crops. Progress in this area has been achieved using both conventional breeding and transgenic approaches to date. However, further advancements using traditional breeding methods will be complicated by the polyploid nature of many oilseed crops and associated time constraints, while public perception and the prohibitive cost of regulatory processes hinders the commercialization of transgenic oilseed crops.

View Article and Find Full Text PDF

Triacylglycerols have important physiological roles in photosynthetic organisms, and are widely used as food, feed and industrial materials in our daily life. Phospholipid:diacylglycerol acyltransferase (PDAT) is the pivotal enzyme catalyzing the acyl-CoA-independent biosynthesis of triacylglycerols, which is unique in plants, algae and fungi, but not in animals, and has essential functions in plant and algal growth, development and stress responses. Currently, this enzyme has yet to be examined in an evolutionary context at the level of the green lineage.

View Article and Find Full Text PDF

Legumes provide an important source of food and feed due to their high protein levels and many health benefits, and also impart environmental and agronomic advantages as a consequence of their ability to fix nitrogen through their symbiotic relationship with rhizobia. As a result of our growing population, the demand for products derived from legumes will likely expand considerably in coming years. Since there is little scope for increasing production area, improving the productivity of such crops in the face of climate change will be essential.

View Article and Find Full Text PDF
Article Synopsis
  • Seed-specific down-regulation of AtCESA1 and AtCESA9 genes in Arabidopsis affects seed storage compounds, offering insights for improving seed quality by reducing cellulose levels.
  • AtCESA1 down-regulation increases seed protein content by about 3% while decreasing oil content by the same percentage, while AtCESA9 does not significantly affect these components.
  • The study suggests that manipulating cellulose synthesis through molecular breeding could help redirect carbon from cellulose to more valuable compounds like oil and protein, enhancing crop seed quality.
View Article and Find Full Text PDF

Vegetable oil is mainly composed of triacylglycerol (TAG), a storage lipid that serves as a major commodity for food and industrial purposes, as well as an alternative biofuel source. While TAG is typically not produced at significant levels in vegetative tissues, emerging evidence suggests that its accumulation in such tissues may provide one mechanism by which plants cope with abiotic stress. Different types of abiotic stress induce lipid remodeling through the action of specific lipases, which results in various alterations in membrane lipid composition.

View Article and Find Full Text PDF

Haematococcus pluvialis is a green microalga used in the algal biotechnology industry that can accumulate considerable amounts of storage triacylglycerol (TAG) and astaxanthin, which is a high-value carotenoid with strong antioxidant activity, under stress conditions. Diacylglycerol acyltransferase (DGAT) catalyzes the last step of the acyl-CoA-dependent TAG biosynthesis and appears to represent a bottleneck in algal TAG formation. In this study, putative H.

View Article and Find Full Text PDF

The improvement of photosynthesis using biotechnological approaches has been the focus of much research. It is now vital that these strategies be assessed under future atmospheric conditions. The demand for crop products is expanding at an alarming rate due to population growth, enhanced affluence, increased per capita calorie consumption, and an escalating need for plant-based bioproducts.

View Article and Find Full Text PDF