The genus is one of the largest clades of bats, and exhibits some of the most extreme variation in lifespans among mammals alongside unique adaptations to viral tolerance and immune defense. To study the evolution of longevity-associated traits and infectious disease, we generated near-complete genome assemblies and cell lines for 8 closely related species of . Using genome-wide screens of positive selection, analyses of structural variation, and functional experiments in primary cell lines, we identify new patterns of adaptation contributing to longevity, cancer resistance, and viral interactions in bats.
View Article and Find Full Text PDFAging is a nearly inescapable trait among organisms yet lifespan varies tremendously across different species and spans several orders of magnitude in vertebrates alone. This vast phenotypic diversity is driven by distinct evolutionary trajectories and tradeoffs that are reflected in patterns of diversification and constraint in organismal genomes. Age-specific impacts of selection also shape allele frequencies in populations, thus impacting disease susceptibility and environment-specific mortality risk.
View Article and Find Full Text PDFBackground: Serological tests are crucial tools for assessments of SARS-CoV-2 exposure, infection and potential immunity. Their appropriate use and interpretation require accurate assay performance data.
Method: We conducted an evaluation of 10 lateral flow assays (LFAs) and two ELISAs to detect anti-SARS-CoV-2 antibodies.