Annu Int Conf IEEE Eng Med Biol Soc
September 2015
Loss of balance leads to increased likelihood of falling for human locomotion. Determining the likelihood of falling for skiing locomotion is challenging because, unlike walking, normal locomotion is not clearly defined. One of the first learned styles of skiing is wedge style (WS).
View Article and Find Full Text PDFThis research compares normal to unexpected slipping gaits of healthy adults to detect potential to fall. Using various x, y, and z position analyses, including a Root Mean Squared Error (RMSE), significant differences are shown between normal and unexpected slipping gaits. Our results show that after heel strike of the slipping foot, the recovery foot rapidly changes position to restore balance and lower falling potential.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2015
The feasibility of large network inertial measurement units (IMUs) are evaluated for purposes requiring feedback. A series of wireless IMUs were attached to a human lower-limb laboratory model outfitted with joint angle encoders. The goal was to discover if large networks of wireless IMUs can give realtime joint orientation data while still maintaining an acceptable degree of accuracy.
View Article and Find Full Text PDFAbnormal gait caused by stroke or other pathological reasons can greatly impact the life of an individual. Being able to measure and analyze that gait is often critical for rehabilitation. Motion analysis labs and many current methods of gait analysis are expensive and inaccessible to most individuals.
View Article and Find Full Text PDFAn insole system was constructed with 32 sensors inside a size 10 men's shoe. This system allows evaluation of the contributions of individual sensors spread throughout the surface area of the insole. The kinetic variables of interest in this initial study are ground reaction force and anterior-posterior ankle moment.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2013
A new low-cost system for rehabilitation of the impaired upper limb for stroke survivors is presented. A computer game was developed specifically for this purpose and the user's impaired upper extremity is tracked using a downward-pointed Kinect, an inexpensive motion capture system commercially available from Microsoft. A Kalman filter was implemented to reduce data jittering.
View Article and Find Full Text PDFPhysicians routinely prescribe partial weight bearing in a walking boot following fractures of the lower limbs in order to produce the needed mechanical environment to facilitate healing. Plantar pressure measurements can provide key information regarding the mechanical environment experienced by lower limb bones. The effect of walking boots on plantar pressure distribution has been well reported, however, the combined effects of partial weight bearing and walking boots on plantar pressure distribution and center of pressure is unknown.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2012
Vibrotactile threshold testing has been used to investigate activation of human somatosensory pathways. A portable vibrotactile threshold testing device called the Vibrotactile Threshold Evaluator for the Workplace (VTEW) was designed for screening of carpal tunnel syndrome in the workplace, and initially contained a small fan for cooling. During subject testing, the device is operated intermittently, which causes the linear actuator to warm the tactile probe.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2012
Instrumented insoles allow analysis of gait outside of the confines of a motion analysis lab and capture motion data on every step. This study assesses the concurrent validity of center of plantar pressure (COPP) measurements during walking, and shows that our custom instrumented insoles compare favorably to an Advanced Mechanical Technology Inc. (AMTI) force plate in a clinical motion laboratory, particularly when the large difference in price is considered (an insole is nearly two orders of magnitude less expensive than a force plate).
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
June 2012
Current rehabilitation technology and techniques have proven effective at modifying and correcting gait abnormalities. They are however limited to laboratory and clinical settings, under the supervision of a specialist. Conventional techniques for quantifying gait asymmetries can be combined with sensory feedback methods to provide an intuitive and inexpensive feedback system for extra-clinical rehabilitation.
View Article and Find Full Text PDFVibrotactile threshold (VT) testing has been used for nearly a century to investigate activation of human somatosensory pathways. This use of vibrotactile stimuli provides a versatile tool for detecting peripheral neuropathies, and has been broadly used for investigation of carpal tunnel syndrome. New applications include investigation of drug-induced neuropathies and diabetes-related neuropathies.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
April 2011
Our research group hypothesizes that one way to provide low-cost healthcare delivery efficiently is through the use of a large number of inexpensive sensors that can provide meaningful medical data. Typical development of medical instrumentation pursues increased resolution and higher accuracy - accompanied by a corresponding increase in cost; it is no secret that high costs impose a heavy burden on healthcare. We seek to invert the adage that quality is more important than quantity by extracting high quality biomedical information from a large quantity of low-cost measurements, and to demonstrate this using measurement instrumentation developed in our lab for extra-clinical assessment and rehabilitation tools.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
April 2011
The study of bipedal gait is important for two primary reasons: biomimetic robotics and human gait rehabilitation. Both fields have numerous models describing bipedal locomotion that require a no-slip interaction with the ground for accuracy. This paper presents a low cost wearable sensor system capable of identifying slip in real time, which could afford rehabilitative analysts important information on the nature of patient falls, and provide robot designers a feedback ability with which to implement an active traction control system.
View Article and Find Full Text PDFIEEE Trans Inf Technol Biomed
July 2008
We describe a wireless wearable system that was developed to provide quantitative gait analysis outside the confines of the traditional motion laboratory. The sensor suite includes three orthogonal accelerometers, three orthogonal gyroscopes, four force sensors, two bidirectional bend sensors, two dynamic pressure sensors, as well as electric field height sensors. The "GaitShoe" was built to be worn in any shoe, without interfering with gait and was designed to collect data unobtrusively, in any environment, and over long periods.
View Article and Find Full Text PDF