Publications by authors named "Stacy Herrera"

Repeated intermittent exposure to psychostimulants, such as amphetamine, leads to a progressive enhancement of the drug's ability to increase both behavioral and brain neurochemical responses. The expression of these enhancements, known as sensitization, can be regulated by Pavlovian conditioned stimuli. Cues that are associated with drug experience can facilitate sensitization so that it only occurs in the presence of these stimuli (context-specific sensitization).

View Article and Find Full Text PDF

Presenilin 1 (PS1) is an essential γ-secretase component, the enzyme responsible for amyloid precursor protein (APP) intramembraneous cleavage. Mutations in PS1 lead to dominant-inheritance of early-onset familial Alzheimer's disease (FAD). Although expression of FAD-linked PS1 mutations enhances toxic Aβ production, the importance of other APP metabolites and γ-secretase substrates in the etiology of the disease has not been confirmed.

View Article and Find Full Text PDF

Dopaminergic projections from the ventral tegmental area (VTA) to the nucleus accumbens (NAcc) mediate the behavioral and motivational effects of many drugs of abuse, including nicotine. Repeated intermittent administration of these drugs, a pattern often associated with initial drug exposure, sensitises the reactivity of dopamine (DA) neurons in this pathway, enhances the locomotor behaviors the drugs emit, and promotes their pursuit and self-administration. Here we show that activation of nicotinic acetylcholine receptors (nAChRs) in the VTA, but not the NAcc, is essential for the induction of locomotor sensitisation by nicotine.

View Article and Find Full Text PDF

The closely related δ and ε isoforms of the serine/threonine protein kinase casein kinase 1 (Csnk1) have been implicated in the generation of psychostimulant-induced behaviors. In this study, we show that Csnk1δ/ε produces its effects on behavior by acting on the Darpp-32-PP1 signaling pathway to regulate AMPA receptor phosphorylation in the nucleus accumbens (NAcc). Inhibiting Csnk1δ/ε in the NAcc with the selective inhibitor PF-670462 blocks amphetamine induced locomotion and its ability to increase phosphorylation of Darpp-32 at S137 and T34, decrease PP1 activity and increase phosphorylation of the AMPA receptor subunit at S845.

View Article and Find Full Text PDF

Background: Recent evidence indicates that new neurons are produced in the adult hippocampus, and play a functional role in cognitive processes such as learning and memory. In animals, new neuron production is suppressed by increasing age, gamma-aminobutyric acid receptor activity, reductions in basal forebrain activity and brain norepinephrine levels, and decreased environmental stimuli. Similarities between these effects and those of anesthetic administration suggest that anesthetics may modulate new cell production, and raise the possibility that postoperative cognitive dysfunction may result, in part, from anesthetic-induced suppression of adult neurogenesis.

View Article and Find Full Text PDF

Background: Similarities between naturally occurring sleep and general anesthesia suggest that the two states may interact physiologically. The authors have previously demonstrated that sleep deprivation potentiates anesthetic-induced loss of righting reflex (LORR) in rats. One possible mediator for this effect is adenosine, which accumulates in the brains of sleep-deprived animals and reduces anesthetic requirements.

View Article and Find Full Text PDF

Background: Some neurophysiologic similarities between sleep and anesthesia suggest that an anesthetized state may reverse effects of sleep deprivation. The effect of anesthesia on sleep homeostasis, however, is unknown. To test the hypothesis that recovery from sleep deprivation occurs during anesthesia, the authors followed 24 h of sleep deprivation in the rat with a 6-h period of either ad libitum sleep or propofol anesthesia, and compared subsequent sleep characteristics.

View Article and Find Full Text PDF