Epstein-Barr Virus (EBV) BamHI-A rightward frame 1 (BARF1) protein is considered a viral oncogene in epithelial cells and has immune-modulating properties. During viral lytic replication BARF1 is expressed as an early gene, regulated by the immediate early EBV protein R. However, in viral latency BARF1 is exclusively expressed in epithelial tumors such as nasopharyngeal (NPC) and gastric carcinoma (GC) but not in lymphomas, indicating that activation of the BARF1 promoter is cell type specific.
View Article and Find Full Text PDFAll eight human herpesviruses have a conserved herpesvirus protein kinase (CHPK) that is important for the lytic phase of the viral life cycle. In this study, we show that heat shock protein 90 (Hsp90) interacts directly with each of the eight CHPKs, and we demonstrate that an Hsp90 inhibitor drug, 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), decreases expression of all eight CHPKs in transfected HeLa cells. 17-DMAG also decreases expression the of the endogenous Epstein-Barr virus protein kinase (EBV PK, encoded by the BGLF4 gene) in lytically infected EBV-positive cells and inhibits phosphorylation of several different known EBV PK target proteins.
View Article and Find Full Text PDFThe latent-to-lytic switch of Epstein-Barr virus (EBV) is mediated by the immediate early protein BZLF1 (Z). However, the cellular factors regulating this process remain incompletely characterized. In this report, we show that the B-cell-specific transcription factor Pax5 helps to promote viral latency in B cells by blocking Z function.
View Article and Find Full Text PDFThe Epstein-Barr virus (EBV) immediate-early proteins BZLF1 and BRLF1 can both induce lytic EBV reactivation when overexpressed in latently infected cells. Although EBV genome methylation is required for BZLF1-mediated activation of lytic gene expression, the effect of viral genome methylation on BRLF1-mediated viral reactivation has not been well studied. Here, we have compared the effect of viral DNA methylation on BZLF1- versus BRLF1-mediated activation of lytic EBV gene transcription and viral genome replication.
View Article and Find Full Text PDFThe Epstein-Barr virus (EBV) latent-to-lytic switch is mediated by the viral proteins BZLF1 (Z), BRLF1 (R), and BRRF1 (Na). Since we previously showed that DNA-damaging agents (including chemotherapy and irradiation) can induce EBV lytic reactivation and recently demonstrated that wild-type p53 contributes to lytic reactivation, we investigated the role of the ATM kinase during EBV reactivation. ATM phosphorylates and activates p53, as well as numerous other substrates involved in the cellular DNA damage response.
View Article and Find Full Text PDFThe human cytomegalovirus tegument protein UL69 has been shown to be required for efficient viral replication at low multiplicities of infection. Several functions have been associated with UL69, including its ability to regulate cell cycle progression, translation, and the export of viral transcripts from the nucleus to the cytoplasm. However, it remains unclear which, if any, of these activities contribute to the phenotype observed with the UL69 deletion mutant.
View Article and Find Full Text PDFThe Epstein-Barr virus (EBV) latent-to-lytic switch is an essential part of the viral life cycle, but the cellular factors that promote viral reactivation are not well defined. In this report, we demonstrate that the cellular transcription factor Oct-1 cooperates with the EBV immediate-early protein BRLF1 (R, Rta) to induce lytic viral reactivation. We show that cotransfected Oct-1 enhances the ability of BRLF1 to activate lytic gene expression in 293 cells stably infected with a BRLF1-defective EBV mutant (BRLF1-stop) and that Oct-1 increases BRLF1-mediated activation of lytic EBV promoters in reporter gene assays.
View Article and Find Full Text PDFThe Epstein-Barr virus (EBV) BRRF1 lytic gene product (Na) is encoded within the same immediate-early region as the BZLF1 (Z) and BRLF1(R) gene products, but its role during EBV infection has not been well defined. We previously showed that Na cooperates with the R protein to induce lytic gene expression in latently infected EBV-positive 293 cells, and in some EBV-negative cell lines it can activate the Z promoter in reporter gene assays. Here we show that overexpression of Na alone is sufficient to induce lytic gene expression in several different latently infected epithelial cell lines (Hone-Akata, CNE2-Akata, and AGS-Akata), while knockdown of endogenous Na expression reduces lytic gene expression.
View Article and Find Full Text PDFThe human cytomegalovirus (HCMV) tegument protein UL69 is important for efficient viral replication at low multiplicities of infection. Several molecular mechanisms by which UL69 contributes to HCMV replication have been proposed, including UL69's ability to interact with the mRNA export factors UAP56 and URH49 to facilitate the shuttling of viral mRNAs from the nuclei of infected cells. Using a UL69 viral mutant that is unable to bind UAP56 and URH49, we demonstrated that UL69's interaction with UAP56 or URH49 does not contribute to the growth phenotype associated with the UL69 deletion mutant.
View Article and Find Full Text PDFThe Epstein-Barr virus (EBV) immediate-early protein BZLF1 (Z) mediates the switch between latent and lytic EBV infection. Z not only activates early lytic viral gene transcription but also plays a direct role in lytic viral genome replication. Although a small fraction of Z is known to be sumoylated, the effects of this posttranslational modification on various different Z functions have not been well defined.
View Article and Find Full Text PDFGanciclovir (GCV) and acyclovir (ACV) are guanine nucleoside analogues that inhibit lytic herpesvirus replication. GCV and ACV must be monophosphorylated by virally encoded enzymes to be converted into nucleotides and incorporated into viral DNA. However, whether GCV and/or ACV phosphorylation in Epstein-Barr virus (EBV)-infected cells is mediated primarily by the EBV-encoded protein kinase (EBV-PK), the EBV-encoded thymidine kinase (EBV-TK), or both is controversial.
View Article and Find Full Text PDFThe Epstein-Barr virus (EBV)-encoded viral protein kinase, EBV-PK (the BGLF4 gene product), is required for efficient nuclear viral egress in 293 cells. However, since EBV-PK phosphorylates a number of different viral and cellular proteins (including lamin A/C), the relative importance of each target during lytic viral replication remains unclear. We show here that an EBV PK mutant (PKmut; containing stop codons at residues 1 and 5 in EBV-PK) is highly defective for release of infectious virus from 293 cells but not 293T cells.
View Article and Find Full Text PDFEBV causes infectious mononucleosis and is associated with certain malignancies. EBV nuclear antigen 1 (EBNA1) mediates EBV genome replication, partition, and transcription, and is essential for persistence of the viral genome in host cells. Here we demonstrate that Hsp90 inhibitors decrease EBNA1 expression and translation, and that this effect requires the Gly-Ala repeat domain of EBNA1.
View Article and Find Full Text PDF