Histone acetylation has been linked to developmental changes in gene expression and is a validated drug target of apicomplexan parasites, but little is known about the roles of individual histone modifying enzymes and how they are recruited to target genes. The protozoan parasite Toxoplasma gondii (phylum Apicomplexa) is unusual among invertebrates in possessing two GCN5-family lysine acetyltransferases (KATs). While GCN5a is required for gene expression in response to alkaline stress, this KAT is dispensable for parasite proliferation in normal culture conditions.
View Article and Find Full Text PDFWe have previously shown that protozoan parasites, such as Toxoplasma gondii, contain a high prevalence of intrinsically disordered regions in their predicted proteins. Here, we determine that both TgGCN5-family histone acetyltransferases (HATs) contain unusually high levels of intrinsic disorder. A previously identified basic-rich nuclear localization signal (NLS) in the N-terminus of TgGCN5-A is located within such a region of predicted disorder, but this NLS is not conserved in TgGCN5-B.
View Article and Find Full Text PDFIn the past 10 years, the field of parasitology has witnessed an explosion of studies investigating gene regulation. In this review, we will describe recent advances largely stemming from the study of Toxoplasma gondii, a significant opportunistic pathogen and useful model for other apicomplexan protozoa. Surprising findings have emerged, including the discovery of a wealth of epigenetic machinery in these primitive eukaryotes, unusual histone variants, and a battery of plant-like transcription factors.
View Article and Find Full Text PDFA key problem in the treatment of numerous pathogenic eukaryotes centers on their development into latent forms during stress. For example, the opportunistic protist Toxoplasma gondii converts to latent cysts (bradyzoites) responsible for recrudescence of disease. We report that Toxoplasma eukaryotic initiation factor-2alpha (TgIF2alpha) is phosphorylated during stress and establish that protozoan parasites utilize translation control to modulate gene expression during development.
View Article and Find Full Text PDFAntimicrob Agents Chemother
June 2005
The opportunistic apicomplexan parasite Toxoplasma gondii damages fetuses in utero and threatens immunocompromised individuals. The toxicity associated with standard antitoxoplasmal therapies, which target the folate pathway, underscores the importance of examining alternative pharmacological strategies. Parasitic protozoa cannot synthesize purines de novo; consequently, targeting purine salvage enzymes is a plausible pharmacological strategy.
View Article and Find Full Text PDF