Publications by authors named "Stacy Cossette"

Nebulin, a critical protein of the skeletal muscle thin filament, plays important roles in physiological processes such as regulating thin filament length (TFL), cross-bridge cycling, and myofibril alignment. Pathogenic variants in the nebulin gene (NEB) cause NEB-based nemaline myopathy (NEM2), a genetically heterogeneous disorder characterized by hypotonia and muscle weakness, currently lacking curative therapies. In this study, we examined a cohort of ten NEM2 patients, each with unique pathogenic variants, aiming to understand their impact on mRNA, protein, and functional levels.

View Article and Find Full Text PDF

Nebulin, a critical protein of the skeletal muscle thin filament, plays important roles in physiological processes such as regulating thin filament length (TFL), cross-bridge cycling, and myofibril alignment. Mutations in the nebulin gene ( ) cause NEB-based nemaline myopathy (NEM2), a genetically heterogeneous disorder characterized by hypotonia and muscle weakness, currently lacking therapies targeting the underlying pathological mechanisms. In this study, we examined a cohort of ten NEM2 patients, each with unique mutations, aiming to understand their impact on mRNA, protein, and functional levels.

View Article and Find Full Text PDF

Context: There is no current standard among myopathologists for reporting muscle biopsy findings. The National Institute of Neurological Disorders and Stroke has recently launched a common data element (CDE) project to standardize neuromuscular data collected in clinical reports and to facilitate their use in research.

Objective: To develop a more-uniform, prospective reporting tool for muscle biopsies, incorporating the elements identified by the CDE project, in an effort to improve reporting and educational resources.

View Article and Find Full Text PDF

The generation of patient-specific cell lines represents an invaluable tool for diagnostic or translational research, and these cells can be collected from skin or muscle biopsy tissue available during the patient's diagnostic workup. In this protocol, we describe a technique for live cell isolation from small amounts of muscle or skin tissue for primary cell culture. Additionally, we provide a technique for the immortalization of myogenic cell lines and fibroblast cell lines from primary cells.

View Article and Find Full Text PDF

Skeletal muscle is a unique tissue because of its structure and function, which requires specific protocols for tissue collection to obtain optimal results from functional, cellular, molecular, and pathological evaluations. Due to the subtlety of some pathological abnormalities seen in congenital muscle disorders and the potential for fixation to interfere with the recognition of these features, pathological evaluation of frozen muscle is preferable to fixed muscle when evaluating skeletal muscle for congenital muscle disease. Additionally, the potential to produce severe freezing artifacts in muscle requires specific precautions when freezing skeletal muscle for histological examination that are not commonly used when freezing other tissues.

View Article and Find Full Text PDF

Background: Geographic variation may be an indicator of risk factors for birth defects. This study models the geographic distribution of three complex congenital heart defects (CHDs) in eastern Wisconsin, and evaluates effects of demographic census variables linked to geographic location.

Methods: Cases of Hypoplastic Left Heart Syndrome (HLHS), Tetralogy of Fallot (TOF) and d-Transposition of the Great Arteries (d-TGAs) born between1995 and 2004 were identified from three medical centers serving eastern Wisconsin.

View Article and Find Full Text PDF