Am J Physiol Lung Cell Mol Physiol
March 2007
This study tests the hypothesis that the virulence factor hemolysin (Hly) expressed by extraintestinal pathogenic Escherichia coli contributes to surfactant dysfunction and lung injury in a rat model of gram-negative pneumonia. Rats were instilled intratracheally with CP9 (wild type, Hly-positive), CP9hlyA (Hly-minus), CP9/pEK50 (supraphysiological Hly), or purified LPS. At 6 h postinfection, rats given CP9 had a decreased percentage content of large surfactant aggregates in cell-free bronchoalveolar lavage (BAL), decreased large aggregate surface activity, decreased Pa(O2)/FiO2) ratio, increased BAL albumin/protein levels, and increased histological evidence of lung injury compared with rats given CP9hlyA or LPS.
View Article and Find Full Text PDFInfections due to extraintestinal pathogenic E. coli (ExPEC) result in significant morbidity, mortality and increased healthcare costs. An efficacious vaccine against ExPEC would be desirable.
View Article and Find Full Text PDFExtracellular pathogenic Escherichia coli (ExPEC) strains are common causes of a variety of clinical syndromes, including urinary tract infections, abdominal infections, nosocomial pneumonia, neonatal meningitis, and sepsis. ExPEC strains are extracellular bacterial pathogens; therefore, the innate immune response (e.g.
View Article and Find Full Text PDFEnteric gram-negative bacilli, such as Escherichia coli are the most common cause of nosocomial pneumonia. In this study a wild-type extraintestinal pathogenic strain of E. coli (ExPEC)(CP9) and isogenic derivatives deficient in hemolysin (Hly) and cytotoxic necrotizing factor (CNF) were assessed in vitro and in a rat model of gram-negative pneumonia to test the hypothesis that these virulence factors induce neutrophil apoptosis and/or necrosis/lysis.
View Article and Find Full Text PDF