Publications by authors named "Stacie K Reckling"

Wastewater testing can inform public health action as a component of polio outbreak response. During 2022-2023, a total of 7 US jurisdictions (5 states and 2 cities) participated in prospective or retrospective testing of wastewater for poliovirus after a paralytic polio case was identified in New York state. Two distinct vaccine-derived poliovirus type 2 viruses were detected in wastewater from New York state and New York City during 2022, representing 2 separate importation events.

View Article and Find Full Text PDF

Wastewater monitoring is a valuable public health tool that can track a variety of health markers. The strong correlations between trends in wastewater viral concentrations and county-level COVID-19 case counts point to the ability of wastewater data to represent changes in a community's disease burden. However, studies are lacking on whether the populations sampled through wastewater monitoring represent the characteristics of the broader community and the implications on health equity.

View Article and Find Full Text PDF

Regulatory T (Treg) cells are activated and suppress immune responses during infection, and are characterized as CD4(+)CD25(hi)FOXP3(+). Ex vivo studies demonstrate that Treg cells potentially suppress anti-HIV-1 T cell responses. Lentivirus-induced CD4(+)CD25(hi) Treg cells were first described in feline immunodeficiency virus (FIV)-infected cats.

View Article and Find Full Text PDF

Background: The mucosal pathogenesis of HIV has been shown to be an important feature of infection and disease progression. HIV-1 infection causes depletion of intestinal lamina propria CD4+ T cells (LPL), therefore, intestinal CD4+ T cell preservation may be a useful correlate of protection in evaluating vaccine candidates. Vaccine studies employing the cat/FIV and macaque/SIV models frequently use high doses of parenterally administered challenge virus to ensure high plasma viremia in control animals.

View Article and Find Full Text PDF

To establish a characterized model of regulatory T cell (Treg) depletion in the cat we assessed the kinetics of depletion and rebound in peripheral and central lymphoid compartments after treatment with anti-CD25 antibody as determined by cell surface markers and FOXP3 mRNA expression. An 82% decrease in circulating CD4+CD25+ Tregs was observed by day 11 after treatment. CD4+CD25+ cells were also reduced in the thymus (69%), secondary lymphoid tissues (66%), and gut (67%).

View Article and Find Full Text PDF

Natural regulatory T (T reg) cells are involved in control of the immune response, including response to pathogens. Previous work has demonstrated that the repertoire of natural T reg cells may be biased toward self-antigen recognition. Whether they also recognize foreign antigens and how this recognition contributes to their function remain unknown.

View Article and Find Full Text PDF

Endogenous regulatory T cells (T(reg)) play a central role in the control of excessive or misdirected immune responses against self or foreign Ags. To date, virtually no data are available on the nature of the molecules and signals involved in the trafficking and retention of T(reg) in tissues where regulation is required. Here, we show that expression of alpha(E)beta(7) integrin is necessary for the homing of T(reg) at site of Leishmania major infection.

View Article and Find Full Text PDF

Reactivation of dormant infections causes an immense burden of morbidity and mortality in the world at large. Reactivation can occur as a result of immunosuppression, environmental insult, or aging; however, the cause of reactivation of such infections is often not clear. We have previously shown that persistence of the parasite Leishmania major is controlled by endogenous CD4(+) CD25(+) regulatory T (T reg) cells.

View Article and Find Full Text PDF