Publications by authors named "Stacia Wyman"

Background: The possibility of association between SARS-CoV-2 genomic variation and immune evasion is not known among persons with Omicron variant SARS-CoV-2 infection.

Methods: In a retrospective cohort, using Poisson regression adjusting for sociodemographic variables and month of infection, we examined associations between individual non-lineage defining mutations and SARS-CoV-2 immunity status, defined as a) no prior recorded infection, b) not vaccinated but with at least one prior recorded infection, c) complete primary series vaccination, and/or d) primary series vaccination and ≥ 1 booster. We identified all non-synonymous single nucleotide polymorphisms (SNPs), insertions and deletions in SARS-CoV-2 genomes with ≥5% allelic frequency and population frequency of ≥5% and ≤95%.

View Article and Find Full Text PDF

Peptide-enabled ribonucleoprotein delivery for CRISPR engineering (PERC) is a new approach for ex vivo genome editing of primary human cells. PERC uses a single amphiphilic peptide reagent to mediate intracellular delivery of the same pre-formed CRISPR ribonucleoprotein enzymes that are broadly used in research and therapeutics, resulting in high-efficiency editing of stimulated immune cells and cultured hematopoietic stem and progenitor cells (HSPCs). PERC facilitates nuclease-mediated gene knockout, precise transgene knock-in, and base editing.

View Article and Find Full Text PDF

BCL11A-XL directly binds and represses the fetal globin (HBG1/2) gene promoters, using 3 zinc-finger domains (ZnF4, ZnF5, and ZnF6), and is a potential target for β-hemoglobinopathy treatments. Disrupting BCL11A-XL results in derepression of fetal globin and high HbF, but also affects hematopoietic stem and progenitor cell (HSPC) engraftment and erythroid maturation. Intriguingly, neurodevelopmental patients with ZnF domain mutations have elevated HbF with normal hematological parameters.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated the link between genomic variations in the Delta variant of SARS-CoV-2 and breakthrough infections in vaccinated individuals.
  • Researchers analyzed specific mutations in the virus's genome while considering those mutations that appeared frequently throughout the population.
  • Results showed that while there were certain mutations associated with a higher likelihood of breakthrough infections, their overall impact on predicting such infections was minimal.
View Article and Find Full Text PDF
Article Synopsis
  • Scientists found a better way to change genes in human immune cells by using a special peptide that helps deliver CRISPR tools.
  • This new method is easier, cheaper, and less harmful compared to older methods like electroporation.
  • It allows for more successful gene editing and can help create improved T cells that fight tumors in mice.
View Article and Find Full Text PDF

Although the SARS-CoV-2 Omicron variant (BA.1) spread rapidly across the world and effectively evaded immune responses, its viral fitness in cell and animal models was reduced. The precise nature of this attenuation remains unknown as generating replication-competent viral genomes is challenging because of the length of the viral genome (~30 kb).

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to track and monitor SARS-CoV-2 infections among university students and employees to develop effective mitigation strategies during the pandemic.
  • Conducted from June to August 2020 at a California public university, 2,180 students and 738 employees participated, undergoing regular symptom and exposure surveys along with testing.
  • Results showed a low infection rate (2.6% among students, 0.4% among employees), with a significant outbreak linked to a super-spreader event in dorms, highlighting the importance of targeted testing and monitoring in preventing campus transmission.
View Article and Find Full Text PDF

Cassava () is a starchy root crop that supports over a billion people in tropical and subtropical regions of the world. This staple, however, produces the neurotoxin cyanide and requires processing for safe consumption. Excessive consumption of insufficiently processed cassava, in combination with protein-poor diets, can have neurodegenerative impacts.

View Article and Find Full Text PDF

Although the SARS-CoV-2 Omicron variant (BA.1) spread rapidly across the world and effectively evaded immune responses, its viral fitness in cell and animal models was reduced. The precise nature of this attenuation remains unknown as generating replication-competent viral genomes is challenging because of the length of the viral genome (30kb).

View Article and Find Full Text PDF

Background: A point mutation in sickle cell disease (SCD) alters one amino acid in the β-globin subunit of hemoglobin, with resultant anemia and multiorgan damage that typically shortens lifespan by decades. Because SCD is caused by a single mutation, and hematopoietic stem cells (HSCs) can be harvested, manipulated, and returned to an individual, it is an attractive target for gene correction.

Results: An optimized Cas9 ribonucleoprotein (RNP) with an ssDNA oligonucleotide donor together generated correction of at least one β-globin allele in more than 30% of long-term engrafting human HSCs.

View Article and Find Full Text PDF

Naturally occurring point mutations in the promoter switch hemoglobin synthesis from defective adult beta-globin to fetal gamma-globin in sickle cell patients with hereditary persistence of fetal hemoglobin (HPFH) and ameliorate the clinical severity. Inspired by this natural phenomenon, we tiled the highly homologous proximal promoters using adenine and cytosine base editors that avoid the generation of large deletions and identified novel regulatory regions including a cluster at the -123 region. Base editing at -123 and -124 bp of promoter induced fetal hemoglobin (HbF) to a higher level than disruption of well-known BCL11A binding site in erythroblasts derived from human CD34+ hematopoietic stem and progenitor cells (HSPC).

View Article and Find Full Text PDF

Answer ALS is a biological and clinical resource of patient-derived, induced pluripotent stem (iPS) cell lines, multi-omic data derived from iPS neurons and longitudinal clinical and smartphone data from over 1,000 patients with ALS. This resource provides population-level biological and clinical data that may be employed to identify clinical-molecular-biochemical subtypes of amyotrophic lateral sclerosis (ALS). A unique smartphone-based system was employed to collect deep clinical data, including fine motor activity, speech, breathing and linguistics/cognition.

View Article and Find Full Text PDF

Neurodegenerative diseases are challenging for systems biology because of the lack of reliable animal models or patient samples at early disease stages. Induced pluripotent stem cells (iPSCs) could address these challenges. We investigated DNA, RNA, epigenetics, and proteins in iPSC-derived motor neurons from patients with ALS carrying hexanucleotide expansions in .

View Article and Find Full Text PDF

We identified an emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant by viral whole-genome sequencing of 2,172 nasal/nasopharyngeal swab samples from 44 counties in California, a state in the western United States. Named B.1.

View Article and Find Full Text PDF

We identified a novel SARS-CoV-2 variant by viral whole-genome sequencing of 2,172 nasal/nasopharyngeal swab samples from 44 counties in California. Named B.1.

View Article and Find Full Text PDF

Myeloproliferative neoplasms (MPNs) cause the over-production of blood cells such as erythrocytes (polycythemia vera) or platelets (essential thrombocytosis). JAK2 V617F is the most prevalent somatic mutation in many MPNs, but previous modeling of this mutation in mice relied on transgenic overexpression and resulted in diverse phenotypes that were in some cases attributed to expression level. CRISPR-Cas9 engineering offers new possibilities to model and potentially cure genetically encoded disorders via precise modification of the endogenous locus in primary cells.

View Article and Find Full Text PDF

Genome editing often takes the form of either error-prone sequence disruption by non-homologous end joining (NHEJ) or sequence replacement by homology-directed repair (HDR). Although NHEJ is generally effective, HDR is often difficult in primary cells. Here, we use a combination of immunophenotyping, next-generation sequencing, and single-cell RNA sequencing to investigate and reprogram genome editing outcomes in subpopulations of adult hematopoietic stem and progenitor cells.

View Article and Find Full Text PDF
Article Synopsis
  • * The study employs CRISPR-Cas genome editing to showcase that low adult β-globin levels are enough to trigger significant γ-globin re-expression, with ATF4 identified as a key regulator in this response.
  • * The findings reveal that ATF4 binds to a specific enhancer site to influence the expression of MYB, a crucial player in γ-globin regulation, providing insights for potential treatments for hemoglobin disorders.
View Article and Find Full Text PDF

Cas9 is a prokaryotic RNA-guided DNA endonuclease that binds substrates tightly in vitro but turns over rapidly when used to manipulate genomes in eukaryotic cells. Little is known about the factors responsible for dislodging Cas9 or how they influence genome engineering. Unbiased detection through proximity labeling of transient protein interactions in cell-free Xenopus laevis egg extract identified the dimeric histone chaperone facilitates chromatin transcription (FACT) as an interactor of substrate-bound Cas9.

View Article and Find Full Text PDF

Repair of double strand DNA breaks (DSBs) can result in gene disruption or gene modification via homology directed repair (HDR) from donor DNA. Altering cellular responses to DSBs may rebalance editing outcomes towards HDR and away from other repair outcomes. Here, we utilize a pooled CRISPR screen to define host cell involvement in HDR between a Cas9 DSB and a plasmid double stranded donor DNA (dsDonor).

View Article and Find Full Text PDF

DISCOVER-seq (discovery of in situ Cas off-targets and verification by sequencing) is a broadly applicable approach for unbiased CRISPR-Cas off-target identification in cells and tissues. It leverages the recruitment of DNA repair factors to double-strand breaks (DSBs) after genome editing with CRISPR nucleases. Here, we describe a detailed experimental protocol and analysis pipeline with which to perform DISCOVER-seq.

View Article and Find Full Text PDF

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

View Article and Find Full Text PDF

The accumulation of DNA in the cytosol serves as a key immunostimulatory signal associated with infections, cancer and genomic damage. Cytosolic DNA triggers immune responses by activating the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. The binding of DNA to cGAS activates its enzymatic activity, leading to the synthesis of a second messenger, cyclic guanosine monophosphate-adenosine monophosphate (2'3'-cGAMP).

View Article and Find Full Text PDF

Complex genetic mechanisms are thought to underlie many human diseases, yet experimental proof of this model has been elusive. Here, we show that a human cardiac anomaly can be caused by a combination of rare, inherited heterozygous mutations. Whole-exome sequencing of a nuclear family revealed that three offspring with childhood-onset cardiomyopathy had inherited three missense single-nucleotide variants in the , , and genes.

View Article and Find Full Text PDF
Article Synopsis
  • CRISPR-Cas genome editing can target specific DNA but may also cause unintended changes at other sites.
  • Researchers created DISCOVER-Seq, a new method for identifying these off-target effects in living organisms, which tracks the activity of DNA repair proteins.
  • This technique is versatile, compatible with various CRISPR tools, and enables off-target detection in both cell models and live animal studies, potentially enhancing the safety of genome editing in personalized medicine.
View Article and Find Full Text PDF