Larval zebrafish achieve neutral buoyancy by swimming up to the surface and taking in air through their mouths to inflate their swim bladders. We define this behavior as 'surfacing'. Little is known about the sensory basis for this underappreciated behavior of larval fish.
View Article and Find Full Text PDFLarval zebrafish achieve neutral buoyancy by swimming up to the surface and taking in air through their mouths to inflate their swim bladders. We define this behavior as 'surfacing'. Little is known about the sensory basis for this underappreciated behavior of larval fish.
View Article and Find Full Text PDFHere we introduce a novel set of laboratory exercises for teaching about hair cell structure and function and dose-response relationships via fluorescence microscopy. Through fluorescent labeling of lateral line hair cells, students assay aminoglycoside block of mechanoelectrical transduction (MET) channels in larval zebrafish. Students acquire and quantify images of hair cells fluorescently labeled with FM 1-43, which enters the hair cell through MET channels.
View Article and Find Full Text PDFCys(2)-His(2) zinc finger proteins (ZFPs) are the largest family of transcription factors in higher metazoans. They also represent the most diverse family with regards to the composition of their recognition sequences. Although there are a number of ZFPs with characterized DNA-binding preferences, the specificity of the vast majority of ZFPs is unknown and cannot be directly inferred by homology due to the diversity of recognition residues present within individual fingers.
View Article and Find Full Text PDFEngineered zinc-finger nucleases (ZFNs) enable targeted genome modification. Here we describe context-dependent assembly (CoDA), a platform for engineering ZFNs using only standard cloning techniques or custom DNA synthesis. Using CoDA-generated ZFNs, we rapidly altered 20 genes in Danio rerio, Arabidopsis thaliana and Glycine max.
View Article and Find Full Text PDFBackground: Precise and efficient methods for gene targeting are critical for detailed functional analysis of genomes and regulatory networks and for potentially improving the efficacy and safety of gene therapies. Oligomerized Pool ENgineering (OPEN) is a recently developed method for engineering C2H2 zinc finger proteins (ZFPs) designed to bind specific DNA sequences with high affinity and specificity in vivo. Because generation of ZFPs using OPEN requires considerable effort, a computational method for identifying the sites in any given gene that are most likely to be successfully targeted by this method is desirable.
View Article and Find Full Text PDFZinc-finger nucleases (ZFNs) have been successfully used for rational genome engineering in a variety of cell types and organisms. ZFNs consist of a non-specific FokI endonuclease domain and a specific zinc-finger DNA-binding domain. Because the catalytic domain must dimerize to become active, two ZFN subunits are typically assembled at the cleavage site.
View Article and Find Full Text PDFIndividual synthetic Cys2His2 zinc finger domains with novel DNA-binding specificities can be identified from large randomized libraries using selection methodologies such as phage display. We have previously demonstrated that a bacterial cell-based two-hybrid system is at least as effective as phage display for selecting zinc fingers with desired specificities from such libraries. In this chapter we provide updated, detailed protocols for performing zinc finger selections using the bacterial two-hybrid system.
View Article and Find Full Text PDFEngineered zinc-finger nucleases (ZFNs) form the basis of a broadly applicable method for targeted, efficient modification of eukaryotic genomes. In recent work, we described OPEN (oligomerized pool engineering), an 'open-source,' combinatorial selection-based method for engineering zinc-finger arrays that function well as ZFNs. We have also shown in direct comparisons that the OPEN method has a higher success rate than previously described 'modular-assembly' methods for engineering ZFNs.
View Article and Find Full Text PDFWe report here homologous recombination (HR)-mediated gene targeting of two different genes in human iPS cells (hiPSCs) and human ES cells (hESCs). HR-mediated correction of a chromosomally integrated mutant GFP reporter gene reaches efficiencies of 0.14%-0.
View Article and Find Full Text PDFZinc fingers are the most abundant DNA-binding motifs encoded by eukaryotic genomes and one of the best understood DNA-recognition domains. Each zinc finger typically binds a 3-nt target sequence, and it is possible to engineer zinc-finger arrays (ZFAs) that recognize extended DNA sequences by linking together individual zinc fingers. Engineered zinc-finger proteins have proven to be valuable tools for gene regulation and genome modification because they target specific sites in a genome.
View Article and Find Full Text PDFCustom-made zinc-finger nucleases (ZFNs) can induce targeted genome modifications with high efficiency in cell types including Drosophila, C. elegans, plants, and humans. A bottleneck in the application of ZFN technology has been the generation of highly specific engineered zinc-finger arrays.
View Article and Find Full Text PDFSynthetic Cys2His2 zinc finger domains with novel DNA-binding specificities can be identified from large randomized libraries using selection methodologies such as phage display. It has been previously demonstrated that a bacterial cell-based two-hybrid system is at least as effective as phage display for selecting zinc fingers with desired specificities from these libraries. In this chapter the authors provide updated and detailed protocols for performing zinc finger selections using the bacterial two-hybrid system.
View Article and Find Full Text PDFThe engineering of proteins to manipulate cellular genomes has developed into a promising technology for biomedical research, including gene therapy. In particular, zinc-finger nucleases (ZFNs), which consist of a nonspecific endonuclease domain tethered to a tailored zinc-finger (ZF) DNA-binding domain, have proven invaluable for stimulating homology-directed gene repair in a variety of cell types. However, previous studies demonstrated that ZFNs could be associated with significant cytotoxicity due to cleavage at off-target sites.
View Article and Find Full Text PDFThe engineering of proteins to manipulate cellular genomes has developed into a promising technology for biomedical research, including gene therapy. In particular, zinc-finger nucleases (ZFNs), which consist of a nonspecific endonuclease domain tethered to a tailored zinc-finger (ZF) DNA-binding domain, have proven invaluable for stimulating homology-directed gene repair in a variety of cell types. However, previous studies demonstrated that ZFNs could be associated with significant cytotoxicity due to cleavage at off-target sites.
View Article and Find Full Text PDFThe C2H2 zinc finger is the most commonly utilized framework for engineering DNA-binding domains with novel specificities. Many different selection strategies have been developed to identify individual fingers that possess a particular DNA-binding specificity from a randomized library. In these experiments, each finger is selected in the context of a constant finger framework that ensures the identification of clones with a desired specificity by properly positioning the randomized finger on the DNA template.
View Article and Find Full Text PDFEngineered zinc finger nucleases can stimulate gene targeting at specific genomic loci in insect, plant and human cells. Although several platforms for constructing artificial zinc finger arrays using "modular assembly" have been described, standardized reagents and protocols that permit rapid, cross-platform "mixing-and-matching" of the various zinc finger modules are not available. Here we describe a comprehensive, publicly available archive of plasmids encoding more than 140 well-characterized zinc finger modules together with complementary web-based software (termed ZiFiT) for identifying potential zinc finger target sites in a gene of interest.
View Article and Find Full Text PDF