Publications by authors named "Stacey S Willard"

Genuine racial differences in prostate cancer (PCa) biology have been considered among the potential reasons to explain PCa disparities. There is no animal model to represent all aspects of human PCa and, more specifically, to be used for PCa disparity research. The lack of a spontaneously transformed in vitro cell-based model system has been a significant impediment to investigating and understanding potential molecular mechanisms, and the hormonal, genetic, and epigenetic factors underlying the biological and clinical aggressiveness of PCa in African American (AA) men.

View Article and Find Full Text PDF

Glutamate is a nonessential amino acid, a major bioenergetic substrate for proliferating normal and neoplastic cells, and an excitatory neurotransmitter that is actively involved in biosynthetic, bioenergetic, metabolic, and oncogenic signaling pathways. Glutamate signaling activates a family of receptors consisting of metabotropic glutamate receptors (mGluRs) and ionotropic glutamate receptors (iGluRs), both of which have been implicated in chronic disabling brain disorders such as Schizophrenia and neurodegenerative diseases like Alzheimer's, Parkinson's, and multiple sclerosis. In this review, we discuss the structural and functional relationship of mGluRs and iGluRs and their downstream signaling pathways.

View Article and Find Full Text PDF

Glutamate, a nonessential amino acid, is the major excitatory neurotransmitter in the central nervous system. As such, glutamate has been shown to play a role in not only neural processes, such as learning and memory, but also in bioenergetics, biosynthetic and metabolic oncogenic pathways. Glutamate has been the target of intense investigation for its involvement not only in the pathogenesis of benign neurodegenerative diseases (NDDs) such as Parkinson's disease, Alzheimer's disease, schizophrenia, multiple sclerosis, and amyotropic lateral sclerosis (ALS), but also in carcinogenesis and progression of malignant diseases.

View Article and Find Full Text PDF

Recent technological advancements in gene expression analysis have led to the discovery of a promising new group of prostate cancer (PCa) biomarkers that have the potential to influence diagnosis and the prediction of disease severity. The accumulation of deleterious changes in gene expression is a fundamental mechanism of prostate carcinogenesis. Aberrant gene expression can arise from changes in epigenetic regulation or mutation in the genome affecting either key regulatory elements or gene sequences themselves.

View Article and Find Full Text PDF

Purpose: During glutaminolysis, glutamine is catabolized to glutamate and incorporated into citric acid cycle and lipogenesis. Serum glutamate levels were measured in patients with primary prostate cancer or metastatic castrate-resistant prostate cancer (mCRPCa) to establish clinical relevance. The effect of glutamate deprivation or blockade by metabotropic glutamate receptor 1 (GRM1) antagonists was investigated on prostate cancer cells' growth, migration, and invasion to establish biologic relevance.

View Article and Find Full Text PDF

Chemotaxis depends on a network of parallel pathways that coordinate cytoskeletal events to bias cell movement along a chemoattractant gradient. Using a forward genetic screen in Dictyostelium discoideum, we identified the Ste20 kinase KrsB, a homolog of tumor suppressors Hippo and MST1/2, as a negative regulator of cell spreading and substrate attachment. The excessive adhesion of krsB(-) cells reduced directional movement and prolonged the streaming phase of multicellular aggregation.

View Article and Find Full Text PDF

Chemotaxis, or cell migration guided by chemical cues, is critical for a multitude of biological processes in a diverse array of organisms. Dictyostelium discoideum amoebae rely on chemotaxis to find food and to survive starvation conditions, and we have taken advantage of this system to study the molecular regulation of this vital cell behavior. Previous work has identified phosphoinositide signaling as one mechanism which may contribute to directional sensing and actin polymerization during chemotaxis; a mechanism which is conserved in mammalian neutrophils.

View Article and Find Full Text PDF

Developmental signaling cascades that can be perturbed by cocaine and other drugs of abuse have been difficult to study in humans and vertebrate models. Although numerous direct neural targets of cocaine have been elucidated at the molecular level, little is known about the specific cellular events that are impacted indirectly as a result of the drug's perturbation of neural circuits. We have developed oogenesis in Drosophila melanogaster as a model in which to identify downstream biochemical and/or cellular processes that are disrupted by chronic cocaine exposure.

View Article and Find Full Text PDF

The trace biogenic amine tyramine is present in the nervous systems of animals ranging in complexity from nematodes to mammals. Tyramine is synthesized from tyrosine by the enzyme tyrosine decarboxylase (TDC), a member of the aromatic amino acid family, but this enzyme has not been identified in Drosophila or in higher animals. To further clarify the roles of tyramine and its metabolite octopamine, we have cloned two TDC genes from Drosophila melanogaster, dTdc1 and dTdc2.

View Article and Find Full Text PDF

Complex patterns of morphogenesis require intricate coordination of multiple, regulatory processes that control cellular identities, shapes, and behaviors, both locally and over vast distances in the developing organism or tissue. Studying Drosophila oogenesis as a model for tissue morphogenesis, we have discovered extraovarian regulation of follicle formation. Clonal analysis and ovary transplantation have demonstrated that long-range control of follicle individualization requires stall gene function in cells outside of the ovary.

View Article and Find Full Text PDF