Publications by authors named "Stacey R Oppenheimer"

Systemic toxicity assessments for oral or parenteral drugs often utilize the concentration of drug in plasma to enable safety margin calculations for human risk assessment. For topical drugs, there is no standard method for measuring drug concentrations in the stratum basale of the viable epidermis. This is particularly important since the superficial part of the epidermis, the stratum corneum (SC), is nonviable and where most of a topically applied drug remains, never penetrating deeper into the skin.

View Article and Find Full Text PDF

Interest in drugs that covalently modify their target is driven by the desire for enhanced efficacy that can result from the silencing of enzymatic activity until protein resynthesis can occur, along with the potential for increased selectivity by targeting uniquely positioned nucleophilic residues in the protein. However, covalent approaches carry additional risk for toxicities or hypersensitivity reactions that can result from covalent modification of unintended targets. Here we describe methods for measuring the reactivity of covalent reactive groups (CRGs) with a biologically relevant nucleophile, glutathione (GSH), along with kinetic data for a broad array of electrophiles.

View Article and Find Full Text PDF

Imaging MS (IMS) is generating tremendous interest in scientific communities because of its unparalleled capabilities to provide chemical analysis of intact tissue. Advances in analytical chemistry and MS are providing new insights into chemical and biological processes. This review will discuss various IMS platforms and their applications in biomedical and pharmaceutical research.

View Article and Find Full Text PDF

The rate of tumor recurrence post resection suggests that there are underlying molecular changes in nearby histologically normal tissue that go undetected by conventional diagnostic methods that utilize contrast agents and immunohistochemistry. MALDI MS is a molecular technology that has the specificity and sensitivity to monitor and identify molecular species indicative of these changes. The current study utilizes this technology to assess molecular distributions within a tumor and adjacent normal tissue in clear cell renal cell carcinoma biopsies.

View Article and Find Full Text PDF

Nanostructure initiator mass spectrometry (NIMS) is a recently introduced matrix-free desorption/ionization platform that requires minimal sample preparation. Its application to xenobiotics and endogenous metabolites in tissues is demonstrated, where clozapine and N-desmethylclozapine were observed from mouse and rat brain sections. It has also been applied to direct biofluid analysis where ketamine and norketamine were observed from plasma and urine.

View Article and Find Full Text PDF

MALDI imaging mass spectrometry (IMS) has become a valuable tool for the investigation of the content and distribution of molecular species in tissue specimens. Numerous methodological improvements have been made to optimize tissue section preparation and matrix deposition protocols, as well as MS data acquisition and processing. In particular for proteomic analyses, washing the tissue sections before matrix deposition has proven useful to improve spectral qualities by increasing ion yields and the number of signals observed.

View Article and Find Full Text PDF

Direct tissue analysis using matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) provides in situ molecular analysis of a wide variety of biological molecules including xenobiotics. This technology allows measurement of these species in their native biological environment without the use of target-specific reagents such as antibodies. It can be used to profile discrete cellular regions and obtain region-specific images, providing information on the relative abundance and spatial distribution of proteins, peptides, lipids, and drugs.

View Article and Find Full Text PDF

We have previously shown that a forkhead transcription factor Foxa1 interacts with androgen signaling and controls prostate differentiated response. Here, we show the mouse Foxa1 expression marks the entire embryonic urogenital sinus epithelium (UGE), contrasting with Shh and Foxa2, which are restricted to the basally located cells during prostate budding. The Foxa1-deficient mouse prostate shows a severely altered ductal pattern that resembles primitive epithelial cords surrounded by thick stromal layers.

View Article and Find Full Text PDF