J Am Acad Child Adolesc Psychiatry
April 2022
Objective: The current study used visual evoked potentials (VEPs) to examine excitatory and inhibitory postsynaptic activity in children with Phelan-McDermid syndrome (PMS) and the association with genetic factors. PMS is caused by haploinsufficiency of SHANK3 on chromosome 22 and represents a common single-gene cause of autism spectrum disorder (ASD) and intellectual disability.
Method: Transient VEPs were obtained from 175 children, including 31 with PMS, 79 with idiopathic ASD, 45 typically developing controls, and 20 unaffected siblings of children with PMS.
Phelan-McDermid syndrome (PMS) is one of the most common genetic forms of autism spectrum disorder (ASD). While sensory reactivity symptoms are widely reported in idiopathic ASD (iASD), few studies have examined sensory symptoms in PMS. The current study delineates the sensory reactivity phenotype and examines genotype-phenotype interactions in a large sample of children with PMS.
View Article and Find Full Text PDF: Activity dependent neuroprotective protein (ADNP) syndrome is one of the most common single-gene causes of autism spectrum disorder (ASD) and intellectual disability, however, the phenotypes remain poorly described. Here we examine the sensory reactivity phenotype in children and adolescents with ADNP syndrome. Twenty-two individuals with ADNP syndrome received comprehensive clinical evaluations including standardized observations, caregiver interviews, and questionnaires to assess sensory reactivity symptoms.
View Article and Find Full Text PDFPhelan-McDermid syndrome (PMS) is a single-locus cause of developmental delay, autism spectrum disorder, and minimal verbal abilities. There is an urgent need to identify objective outcome measures of expressive language for use in this and other minimally verbal populations. One potential tool is an automated language processor called Language ENvironment Analysis (LENA).
View Article and Find Full Text PDFObjective: There is a critical need to identify biomarkers and objective outcome measures that can be used to understand underlying neural mechanisms in autism spectrum disorder (ASD). Visual evoked potentials (VEPs) offer a noninvasive technique to evaluate the functional integrity of neural mechanisms, specifically visual pathways, while probing for disease pathophysiology.
Methods: Transient VEPs (tVEPs) were obtained from 96 unmedicated children, including 37 children with ASD, 36 typically developing (TD) children, and 23 unaffected siblings (SIBS).
Background: SHANK proteins are crucial for the formation and plasticity of excitatory synapses. Although mutations in all three SHANK genes are associated with autism spectrum disorder (ASD), SHANK3 appears to be the major ASD gene with a prevalence of approximately 0.5% for SHANK3 mutations in ASD, with higher rates in individuals with ASD and intellectual disability (ID).
View Article and Find Full Text PDF