Publications by authors named "Stacey I Zones"

In the past, Cu-oxo or -hydroxy clusters hosted in zeolites have been suggested to enable the selective conversion of methane to methanol, but the impact of the active site's stoichiometry and structure on methanol production is still poorly understood. Herein, we apply theoretical modeling in conjunction with experiments to study the impact of these two factors on partial methane oxidation in the Cu-exchanged zeolite SSZ-13. Phase diagrams developed from first-principles suggest that Cu-hydroxy or Cu-oxo dimers are stabilized when O or NO are used to activate the catalyst, respectively.

View Article and Find Full Text PDF

Competitive adsorption by water in zeolites is so strongly prevalent that established gravimetric techniques for quantification have assumed that humid CO has no effect on preadsorbed water at the same relative humidity. Here, we demonstrate sites in small-pore zeolite K-MER, in which CO adsorption causes 20% of preabsorbed water to desorb under equilibrium control at 30 °C and 5% relative humidity. Diffuse reflectance IR spectroscopic data demonstrate that dimeric water species that are coordinated to cationic sites in K-MER zeolite are selectively displaced by CO under these humid conditions.

View Article and Find Full Text PDF

Deboronation treatment of zeolite B-SSZ-55 can generate vacancy defects consisting of four silanol groups (silanol nests). However, H solid-state NMR spectroscopy indicates the prevalence of two silanol groups (silanol dyads) instead of four silanol groups. Such silanol dyads must be formed by the silanol condensation of two silanol groups at the silanol nests.

View Article and Find Full Text PDF

The structure of zeolite SSZ-43 was determined by 3D electron diffraction, synchrotron X-ray powder diffraction, and high-resolution transmission electron microscopy. The SSZ-43 framework forms one-dimensional, sinusoidal 12-ring channels from 5 6 butterfly units commonly found in other zeolites, but with unique 6.5×6.

View Article and Find Full Text PDF

The zeolite catalyst SSZ-42 shows a remarkable high abundance (≈80 %) of hydrogen-bonded Brønsted acid sites (BAS), which are deshielded from the H chemical shift of unperturbed BAS at typically 4 ppm. This is due to their interaction with neighboring oxygen atoms in the zeolite framework when oxygen alignments are suitable. The classification and diversity of hydrogen bonding is assessed by DFT calculations, showing that oval-shaped 6-rings and 5-rings allow for a stronger hydrogen bond to oxygen atoms on the opposite ring side, yielding higher experimental chemical shifts (δ ( H)=6.

View Article and Find Full Text PDF
Article Synopsis
  • - The study explores how a specific molecule interacts with a pore mouth, focusing on a calix[4]arene-Ti complex that's attached to the surface of a zeotype material.
  • - Using techniques like X-ray absorption and NMR spectroscopy, researchers observed a unique shape of this complex when it was located at precise spots between microporous cavities and the external surface.
  • - Computational analysis indicates that this unique shape is caused by the optimal arrangement of the molecule, which enhances its interactions with the cavity walls, providing insights into how environmental conditions influence molecular confinement and adsorption.
View Article and Find Full Text PDF

Nests of three silanol groups are located on the internal pore surface of calcined zeolite SSZ-70. 2D H double/triple-quantum single-quantum correlation NMR experiments enable a rigorous identification of these silanol triad nests. They reveal a close proximity to the structure directing agent (SDA), that is, N,N'-diisobutyl imidazolium cations, in the as-synthesized material, in which the defects are negatively charged (silanol dyad plus one charged SiO siloxy group) for charge balance.

View Article and Find Full Text PDF

The high-silica zeolite SSZ-27 was synthesized using one of the isomers of the organic structure-directing agent that is known to produce the large-pore zeolite SSZ-26 (CON). The structure of the as-synthesized form was solved using multi-crystal electron diffraction data. Data were collected on eighteen crystals, and to obtain a high-quality and complete data set for structure refinement, hierarchical cluster analysis was employed to select the data sets most suitable for merging.

View Article and Find Full Text PDF

The effect of dynamic reorganization and confinement of isolated Ti catalytic centers supported on silicates is investigated for olefin epoxidation. Active sites consist of grafted single-site calix[4]arene-Ti centers or their calcined counterparts. Their location is synthetically controlled to be either unconfined at terminal T-atom positions (denoted as type-(i)) or within confining 12-MR pockets (denoted as type-(ii); diameter ∼7 Å, volume ∼185 Å) composed of hemispherical cavities on the external surface of zeotypes with *-SVY topology.

View Article and Find Full Text PDF

The adsorption and reaction properties of heterogeneous zeolite catalysts (e.g. for catalytic cracking of petroleum, partial oxidation of natural gas) depend strongly on the types and distributions of Al heteroatoms in the aluminosilicate frameworks.

View Article and Find Full Text PDF

The effect of outer-sphere environment on alkene epoxidation catalysis using an organic hydroperoxide oxidant is demonstrated for calix[4]arene-Ti single-sites grafted on amorphous vs crystalline delaminated zeotype (UCB-4) silicates as supports. A chelating calix[4]arene macrocyclic ligand helps enforce a constant Ti inner-sphere, as characterized by UV-visible and X-ray absorption spectroscopies, thus enabling the rigorous comparison of outer-sphere environments across different siliceous supports. These outer-sphere environments are characterized by solid-state H NMR spectroscopy to comprise proximally organized silanols confined within 12 membered-ring cups in crystalline UCB-4, and are responsible for up to 5-fold enhancements in rates of epoxidation by Ti centers.

View Article and Find Full Text PDF

A series of small-pore zeolites are synthesized and investigated as catalysts for the methanol-to-olefins (MTO) reaction. Small-pore zeolites SSZ-13, SSZ-16, SSZ-27, SSZ-28, SSZ-52, SSZ-98, SSZ-99, SSZ-104, SSZ-105 and an ITQ-3-type material are synthesized, and the results from their use as catalytic materials in the MTO reaction compared to those obtained from SAPO-34. The production of propane that tends to correlate with catalytic material lifetime (higher initial propane yields lead to shorter lifetimes) declines with increasing Si/Al (as has been observed previously for SSZ-13), and a larger cage dimension leads to higher propane yields at a fixed Si/Al.

View Article and Find Full Text PDF

The structure of the calcined form of the high-silica zeolite SSZ-70 has been elucidated by combining synchrotron X-ray powder diffraction (XRPD), high-resolution transmission electron microscopy (HRTEM), and two-dimensional (2D) dynamic nuclear polarization (DNP)-enhanced NMR techniques. The framework structure of SSZ-70 is a polytype of MWW and can be viewed as a disordered ABC-type stacking of MWW-layers. HRTEM and XRPD simulations show that the stacking sequence is almost random, with each layer being shifted by ±1/3 along the ⟨110⟩ direction with respect to the previous one.

View Article and Find Full Text PDF

Internal defect SiOH and SiO groups evolve during the structure formation of high-Si zeolites in the presence of a cationic organic structure-directing agent (SDA). These negatively charged defects do not completely disappear upon calcination. Herein we investigate the clustering of defect groups and their location within the pore walls of four zeolites.

View Article and Find Full Text PDF

Can the location of the organic structure-directing agent (SDA) inside the channel system of a zeolite be determined experimentally in a systematic manner? In an attempt to answer this question, we investigated six borosilicate zeolites of known framework structure (SSZ-53, SSZ-55, SSZ-56, SSZ-58, SSZ-59, and SSZ-60), where the location of the SDA had only been simulated using molecular modeling techniques in previous studies. From synchrotron powder diffraction data, we were able to retrieve reliable experimental positions for the SDA by using a combination of simulated annealing (global optimization) and Rietveld refinement. In this way, problems arising from data quality and only partially compatible framework and SDA symmetries, which can lead to indecipherable electron density maps, can be overcome.

View Article and Find Full Text PDF

Large-pore microporous materials are of great interest to process bulky hydrocarbon and biomass-derived molecules. ITQ-27 (IWV) has a two-dimensional pore system bounded by 12-membered rings (MRs) that lead to internal cross-sections containing 14 MRs. Investigations into the catalytic behavior of aluminosilicate (zeolite) materials with this framework structure have been limited until now due to barriers in synthesis.

View Article and Find Full Text PDF

Zeolite delamination increases the external surface area available for catalyzing the conversion of bulky molecules, but a fundamental understanding of the delamination process remains unknown. Here we report morphological changes accompanying delamination on the length scale of individual zeolite clusters determined by 3-D imaging in scanning transmission electron microscopy. The results are tomograms that demonstrate delamination as it proceeds on the nanoscale through two distinct key steps: a chemical treatment that leads to a swelled material and a subsequent calcination that leads to curling and peeling off of delaminated zeolite sheets over hundreds of nanometers.

View Article and Find Full Text PDF

The structure of the as-synthesized borosilicate zeolite SSZ-87 has been solved by combining high-resolution X-ray powder diffraction (XPD) and rotation electron diffraction (RED) techniques. The unit cell and space group symmetry were found from the XPD data, and were essential for the initial analysis of the RED data. Although the RED data were only 15% complete, this proved to be enough for structure solution with the program Focus.

View Article and Find Full Text PDF

The encapsulation of metal clusters (Pt, Ru, Rh) within MFI was achieved by exchanging cationic metal precursors into a parent zeolite (BEA, FAU), reducing them with H2 to form metal clusters, and transforming these zeolites into daughter structures of higher framework density (MFI) under hydrothermal conditions. These transformations required MFI seeds or organic templates for FAU parent zeolites, but not for BEA, and occurred with the retention of encapsulated clusters. Clusters uniform in size (1.

View Article and Find Full Text PDF

The synthesis of the high-silica zeolite SSZ-61 using a particularly bulky polycyclic structure-directing agent and the subsequent elucidation of its unusual framework structure with extra-large dumbbell-shaped pore openings are described. By using information derived from a variety of X-ray powder diffraction and electron microscopy techniques, the complex framework structure, with 20 Si atoms in the asymmetric unit, could be determined and the full structure refined. The Si atoms at the waist of the dumbbell are only three-connected and are bonded to terminal O atoms pointing into the channel.

View Article and Find Full Text PDF

Layered borosilicate zeolite precursor ERB-1P (Si/B = 11) is delaminated via simultaneous deboronation and SDA removal, to yield material DZ-1 consisting of silanol nests, using a simple aqueous Zn(NO3)2 treatment. Characterization of this synthesis process by PXRD shows loss of long-range order, and transmission electron microscopy (TEM) demonstrates transformation of rectilinear layers in the layered zeolite precursor to single and curved layers in the delaminated material. N2 physisorption confirms the expected decrease of micropore volume and increase in external surface area for delaminated materials relative to their calcined 3D zeolite counterpart.

View Article and Find Full Text PDF

Molecular-level interactions at organic-inorganic interfaces play crucial roles in many fields including catalysis, drug delivery, and geological mineral precipitation in the presence of organic matter. To seek insights into organic-inorganic interactions in porous framework materials, we investigated the phase evolution and energetics of confinement of a rigid organic guest, N,N,N-trimethyl-1-adamantammonium iodide (TMAAI), in inorganic porous silica frameworks (SSZ-24, MCM-41, and SBA-15) as a function of pore size (0.8 nm to 20.

View Article and Find Full Text PDF

The work here describes the kinetic analyses of aluminum replacement for boron in a suite of borosilicate molecular sieves. While the method has been described before as a means of converting synthesized borosilicates (with weak inherent acidity) to aluminosilicates (with much stronger acid strength) when there are large pores in the structure, here we carry out the transformation under less than optimal replacement concentrations, in order to better follow the kinetics. We examined several zeolite structures with boundary conditions of boron MEL where there are only 10-ring (or intermediate) pore structures and no Al is taken up, to multidimensional large pore zeolites, like boron beta, where Al substitution can occur everywhere.

View Article and Find Full Text PDF

Layered borosilicate zeolite precursor ERB-1P (Si/B = 11) is delaminated via isomorphous substitution of Al for B using a simple aqueous Al(NO3)3 treatment. Characterization by PXRD shows loss of long-range order, and TEM demonstrates transformation of rectilinear layers in the precursor to single and curved layers in the delaminated material. N2 physisorption and base titration confirm the expected decrease of micropore volume and increase in external surface area for delaminated materials relative to their calcined 3D zeolite counterpart, whereas FTIR and multinuclear NMR spectroscopies demonstrate synthesis of Brønsted acid sites upon delamination.

View Article and Find Full Text PDF

A new zeolite (SSZ-52, |(C14H28N)6Na6(H2O)18|[Al12Si96O216]), related to the DeNOx catalyst Cu-SSZ-13 (CHA framework type), has been synthesized using an unusual polycyclic quaternary ammonium cation as the structure-directing agent. By combining X-ray powder diffraction (XPD), high-resolution transmission electron microscopy (HRTEM) and molecular modeling techniques, its porous aluminosilicate framework structure (R3m, a = 13.6373(1) Å, c = 44.

View Article and Find Full Text PDF