Publications by authors named "Stacey Gabriel"

Blood lipid traits are treatable and heritable risk factors for heart disease, a leading cause of mortality worldwide. Although genome-wide association studies (GWASs) have discovered hundreds of variants associated with lipids in humans, most of the causal mechanisms of lipids remain unknown. To better understand the biological processes underlying lipid metabolism, we investigated the associations of plasma protein levels with total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL) cholesterol, and low-density lipoprotein (LDL) cholesterol in blood.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers tackled the challenge of studying structural variants (SVs) in repetitive genomic regions using advanced technologies like long-read sequencing and the gapless T2T assembly.
  • They successfully analyzed 13 complex cases, resolving 10 by identifying specific genomic breakpoints and structures that were previously difficult to sequence, including Robertsonian translocations and ring chromosomes.
  • The study highlighted new mechanisms for SV formation and provided insights into how these genome variations affect gene expression and potential implications for disease diagnosis and genome biology.
View Article and Find Full Text PDF

Dysanapsis refers to a mismatch between airway tree caliber and lung size arising early in life. Dysanapsis assessed by computed tomography (CT) is evident by early adulthood and associated with chronic obstructive pulmonary disease (COPD) risk later in life. By examining the genetic factors associated with CT-assessed dysanapsis, we aimed to elucidate its molecular underpinnings and physiological significance across the lifespan.

View Article and Find Full Text PDF

Bulk-tissue molecular quantitative trait loci (QTLs) have been the starting point for interpreting disease-associated variants, and context-specific QTLs show particular relevance for disease. Here, we present the results of mapping interaction QTLs (iQTLs) for cell type, age, and other phenotypic variables in multi-omic, longitudinal data from the blood of individuals of diverse ancestries. By modeling the interaction between genotype and estimated cell-type proportions, we demonstrate that cell-type iQTLs could be considered as proxies for cell-type-specific QTL effects, particularly for the most abundant cell type in the tissue.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on understanding how purifying natural selection affects variations in non-coding regions of the human genome, alongside existing knowledge of protein-coding genes responsible for human disorders.
  • - Researchers created a comprehensive constraint map, named Gnocchi, using data from 76,156 human genomes to analyze genomic variations, with a refined model that factors in local sequences and features to identify areas with less variation.
  • - Findings indicate that while protein-coding regions show stronger constraint, certain non-coding regions related to regulatory elements are also important, suggesting that analyzing non-coding DNA can help uncover previously unidentified constrained genes linked to diseases.
View Article and Find Full Text PDF

Background: Individuals with type 2 diabetes (T2D) have an increased risk of coronary artery disease (CAD), but questions remain about the underlying pathology. Identifying which CAD loci are modified by T2D in the development of subclinical atherosclerosis (coronary artery calcification [CAC], carotid intima-media thickness, or carotid plaque) may improve our understanding of the mechanisms leading to the increased CAD in T2D.

Methods: We compared the common and rare variant associations of known CAD loci from the literature on CAC, carotid intima-media thickness, and carotid plaque in up to 29 670 participants, including up to 24 157 normoglycemic controls and 5513 T2D cases leveraging whole-genome sequencing data from the Trans-Omics for Precision Medicine program.

View Article and Find Full Text PDF
Article Synopsis
  • Identifying impactful rare genetic variants is difficult, but using personal multi-omics can help overcome this challenge, as shown in a study involving several hundred individuals over 10 years.
  • By analyzing whole-genome sequencing and other omics data, researchers found that combining expression and protein data significantly increased the detection of rare stop and frameshift variants.
  • A new Bayesian hierarchical model called "Watershed" was used to prioritize rare variants linked to significant traits, revealing variants that influence complex conditions like height, schizophrenia, and Alzheimer's disease.
View Article and Find Full Text PDF
Article Synopsis
  • Long non-coding RNAs (lncRNAs) play crucial roles in regulating lipid metabolism and have been studied in relation to genetic variants and complex traits.
  • This research utilized high-coverage whole-genome sequencing of over 66,000 diverse participants to assess how rare variants in lncRNA genes affect blood lipid levels, using a statistical framework to analyze the associations.
  • The study found 83 lncRNA variants significantly linked to lipid levels, with many being independent of common genetic variations, and replicated a majority of these findings with data from another large cohort.
View Article and Find Full Text PDF

Blood lipid traits are treatable and heritable risk factors for heart disease, a leading cause of mortality worldwide. Although genome-wide association studies (GWAS) have discovered hundreds of variants associated with lipids in humans, most of the causal mechanisms of lipids remain unknown. To better understand the biological processes underlying lipid metabolism, we investigated the associations of plasma protein levels with total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL), and low-density lipoprotein cholesterol (LDL) in blood.

View Article and Find Full Text PDF
Article Synopsis
  • Long non-coding RNAs (lncRNAs) play key roles in regulating biological functions, and new genomic studies allow researchers to explore their connection to complex traits, like blood lipid levels.
  • This research involved high-coverage whole genome sequencing from over 66,000 participants, focusing on the influence of rare variants in 165,375 lncRNA genes on lipid variability.
  • The study found 83 rare lncRNA variant sets linked to blood lipid levels, with many of these associations being independent of common variants, suggesting potential new avenues for therapeutic interventions.
View Article and Find Full Text PDF

Bulk tissue molecular quantitative trait loci (QTLs) have been the starting point for interpreting disease-associated variants, while context-specific QTLs show particular relevance for disease. Here, we present the results of mapping interaction QTLs (iQTLs) for cell type, age, and other phenotypic variables in multi-omic, longitudinal data from blood of individuals of diverse ancestries. By modeling the interaction between genotype and estimated cell type proportions, we demonstrate that cell type iQTLs could be considered as proxies for cell type-specific QTL effects.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates how exonic variants (genetic changes within coding regions) are linked to traits (phenotypes) but can show variable effects (penetrance) among different individuals.
  • - Researchers found that mRNA splicing influenced by genetic factors affects the harmfulness of these exonic variants, showing a depletion of pathogenic alleles in highly expressed exons.
  • - By analyzing data from large genomic studies, the authors suggest that certain genetic variants might help mitigate the impact of rare harmful variants, particularly in relation to autism risk.
View Article and Find Full Text PDF
Article Synopsis
  • Long-read RNA-sequencing methods can capture full transcript isoforms but traditionally have low throughput*. -
  • The new technique, multiplexed arrays isoform sequencing (MAS-ISO-seq), enhances this by combining cDNAs for more efficient long-read sequencing, boosting throughput by over 15 times*. -
  • In experiments with tumor-infiltrating T cells, MAS-ISO-seq led to a significant increase (12- to 32-fold) in the identification of differentially spliced genes*.
View Article and Find Full Text PDF

We explored ancestry-related differences in the genetic architecture of whole-blood gene expression using whole-genome and RNA sequencing data from 2,733 African Americans, Puerto Ricans and Mexican Americans. We found that heritability of gene expression significantly increased with greater proportions of African genetic ancestry and decreased with higher proportions of Indigenous American ancestry, reflecting the relationship between heterozygosity and genetic variance. Among heritable protein-coding genes, the prevalence of ancestry-specific expression quantitative trait loci (anc-eQTLs) was 30% in African ancestry and 8% for Indigenous American ancestry segments.

View Article and Find Full Text PDF

Integrative approaches that simultaneously model multi-omics data have gained increasing popularity because they provide holistic system biology views of multiple or all components in a biological system of interest. Canonical correlation analysis (CCA) is a correlation-based integrative method designed to extract latent features shared between multiple assays by finding the linear combinations of features-referred to as canonical variables (CVs)-within each assay that achieve maximal across-assay correlation. Although widely acknowledged as a powerful approach for multi-omics data, CCA has not been systematically applied to multi-omics data in large cohort studies, which has only recently become available.

View Article and Find Full Text PDF

Background: Risk for venous thromboembolism has a strong genetic component. Whole genome sequencing from the TOPMed program (Trans-Omics for Precision Medicine) allowed us to look for new associations, particularly rare variants missed by standard genome-wide association studies.

Methods: The 3793 cases and 7834 controls (11.

View Article and Find Full Text PDF
Article Synopsis
  • A major study involving 580,869 participants identified 1,020 genetic signals linked to lung function impairment, which is crucial in understanding chronic obstructive pulmonary disease (COPD) and predicting mortality.
  • * The research found 559 genes related to lung function that were connected to 29 different biological pathways and demonstrated variations across ancestry, age, and smoking habits.
  • * Findings suggest potential new targets for therapy by highlighting specific genetic variants and proteins, ultimately contributing to better understanding and treatment of COPD.
View Article and Find Full Text PDF

Identifying genetic risk factors for highly heterogeneous disorders like epilepsy remains challenging. Here, we present the largest whole-exome sequencing study of epilepsy to date, with >54,000 human exomes, comprising 20,979 deeply phenotyped patients from multiple genetic ancestry groups with diverse epilepsy subtypes and 33,444 controls, to investigate rare variants that confer disease risk. These analyses implicate seven individual genes, three gene sets, and four copy number variants at exome-wide significance.

View Article and Find Full Text PDF
Article Synopsis
  • - Exonic variants are strongly associated with traits, but their harmful effects can vary between individuals, a phenomenon called variable penetrance.
  • - The study suggests that the way mRNA is spliced—controlled by genetic factors—can influence the pathogenic impact of these exonic variants.
  • - Analysis of data shows that common genetic variants affecting splicing may help mitigate the negative effects of rare pathogenic variants, particularly in the context of conditions like autism.
View Article and Find Full Text PDF
Article Synopsis
  • Researchers compiled a comprehensive catalog of 355,667 structural variants (SVs) from DNA data, with over half being novel, to better understand the relationship between SVs and diseases.
  • The study involved rigorous methods to ensure high-quality variant identification, showing over 90% accuracy compared to previous genetic assemblies.
  • This catalog reveals significant connections between SVs and various health traits, identifying 690 specific regions that may influence medically relevant genes, providing a crucial resource for disease research.
View Article and Find Full Text PDF

Ever larger Structural Variant (SV) catalogs highlighting the diversity within and between populations help researchers better understand the links between SVs and disease. The identification of SVs from DNA sequence data is non-trivial and requires a balance between comprehensiveness and precision. Here we present a catalog of 355,667 SVs (59.

View Article and Find Full Text PDF

The challenge of eradicating leukemia in patients with acute myelogenous leukemia (AML) after initial cytoreduction has motivated modern efforts to combine synergistic active modalities including immunotherapy. Recently, the ETCTN/CTEP 10026 study tested the combination of the DNA methyltransferase inhibitor decitabine together with the immune checkpoint inhibitor ipilimumab for AML/myelodysplastic syndrome (MDS) either after allogeneic hematopoietic stem cell transplantation (HSCT) or in the HSCT-naïve setting. Integrative transcriptome-based analysis of 304 961 individual marrow-infiltrating cells for 18 of 48 subjects treated on study revealed the strong association of response with a high baseline ratio of T to AML cells.

View Article and Find Full Text PDF