Objectives: Loss of functional β-cell mass is a key factor contributing to poor glycemic control in advanced type 2 diabetes (T2D). We have previously reported that the inhibition of the neuropeptide Y1 receptor improves the islet transplantation outcome in type 1 diabetes (T1D). The aim of this study was to identify the pathophysiological role of the neuropeptide Y (NPY) system in human T2D and further evaluate the therapeutic potential of using the Y1 receptor antagonist BIBO3304 to improve β-cell function and survival in T2D.
View Article and Find Full Text PDFAims/hypothesis: Stimulator of IFN genes (STING) is a central hub for cytosolic nucleic acid sensing and its activation results in upregulation of type I IFN production in innate immune cells. A type I IFN gene signature seen before the onset of type 1 diabetes has been suggested as a driver of disease initiation both in humans and in the NOD mouse model. A possible source of type I IFN is through activation of the STING pathway.
View Article and Find Full Text PDFType 17 immune responses, typified by the production of the cytokines IL-17A and IL-17F, have been implicated in the development of type 1 diabetes in animal models and human patients, however the underlying pathogenic mechanisms have not been clearly elucidated. While previous studies show that IL-17A enhances inflammatory gene expression and cell death in mouse β-cells and human islets, the function of IL-17F in pancreatic β-cells is completely untested to date. Here we show that IL-17F exhibits potent pathogenic effects in mouse β-cell lines and islets.
View Article and Find Full Text PDFDysregulation of lipid homeostasis is intimately associated with defects in insulin secretion, a key feature of type 2 diabetes. Here, we explore the role of the putative lipid transporter ABCA12 in regulating insulin secretion from β-cells. Mice with β-cell-specific deletion of Abca12 display impaired glucose-stimulated insulin secretion and eventual islet inflammation and β-cell death.
View Article and Find Full Text PDFIn type 1 diabetes, maturation of activated autoreactive CD8 T cells to fully armed effector cytotoxic T lymphocytes (CTL) occurs within the islet. At present the signals required for the maturation process are poorly defined. Cytokines could potentially provide the necessary "third signal" required to generate fully mature CTL capable of killing insulin-producing β-cells.
View Article and Find Full Text PDFCD8 T cells play a central role in beta-cell destruction in type 1 diabetes. CD8 T cells use two main effector pathways to kill target cells, perforin plus granzymes and FAS ligand (FASL). We and others have established that in non-obese diabetic (NOD) mice, perforin is the dominant effector molecule by which autoreactive CD8 T cells kill beta cells.
View Article and Find Full Text PDFGranzyme A is a protease implicated in the degradation of intracellular DNA. Nucleotide complexes are known triggers of systemic autoimmunity, but a role in organ-specific autoimmune disease has not been demonstrated. To investigate whether such a mechanism could be an endogenous trigger for autoimmunity, we examined the impact of granzyme A deficiency in the NOD mouse model of autoimmune diabetes.
View Article and Find Full Text PDFRecent advances in immunotherapeutics have not yet changed the routine management of autoimmune type 1 diabetes. There is an opportunity to repurpose therapeutics used to treat other diseases to treat type 1 diabetes, especially when there is evidence for overlapping mechanisms. Janus kinase (JAK) 1/JAK2 inhibitors are in development or clinical use for indications including rheumatoid arthritis.
View Article and Find Full Text PDFIn type 1 diabetes, cytotoxic CD8(+) T lymphocytes (CTLs) directly interact with pancreatic beta cells through major histocompatibility complex class I. An immune synapse facilitates delivery of cytotoxic granules, comprised mainly of granzymes and perforin. Perforin deficiency protects the majority of non-obese diabetic (NOD) mice from autoimmune diabetes.
View Article and Find Full Text PDFLoss of pancreatic beta cells is a feature of type-2 diabetes. High glucose concentrations induce endoplasmic reticulum (ER) and oxidative stress-mediated apoptosis of islet cells in vitro. ER stress, oxidative stress and high glucose concentrations may also activate the NLRP3 inflammasome leading to interleukin (IL)-1β production and caspase-1 dependent pyroptosis.
View Article and Find Full Text PDFAims/hypothesis: Type 1 diabetes results from T cell-mediated destruction of pancreatic beta cells. The mechanisms of beta cell destruction in vivo, however, remain unclear. We aimed to test the relative roles of the main cell death pathways: apoptosis, necrosis and necroptosis, in beta cell death in the development of CD4(+) T cell-mediated autoimmune diabetes.
View Article and Find Full Text PDFType I interferons (IFNs) have been implicated in the initiation of islet autoimmunity and development of type 1 diabetes. To directly test their involvement, we generated NOD mice deficient in type I IFN receptors (NOD.IFNAR1(-/-)).
View Article and Find Full Text PDFIslet allograft survival limits the long-term success of islet transplantation as a potential curative therapy for type 1 diabetes. A number of factors compromise islet survival, including recurrent diabetes. We investigated whether CD39, an ectonucleotidase that promotes the generation of extracellular adenosine, would mitigate diabetes in the T cell-mediated multiple low-dose streptozotocin (MLDS) model.
View Article and Find Full Text PDFInfiltration of pancreatic islets by immune cells, termed insulitis, increases progressively once it begins and leads to clinical type 1 diabetes. But even after diagnosis some islets remain unaffected and infiltration is patchy rather than uniform. Traffic of autoreactive T cells into the pancreas is likely to contribute to insulitis progression but it could also depend on T-cell proliferation within islets.
View Article and Find Full Text PDFPrevention of autoimmunity requires the elimination of self-reactive T cells during their development in the thymus and maturation in the periphery. Transgenic NOD mice that overexpress islet-specific glucose 6 phosphatase catalytic subunit-related protein (IGRP) in antigen-presenting cells (NOD-IGRP mice) have no IGRP-specific T cells. To study the relative contribution of central and peripheral tolerance mechanisms to deletion of antigen-specific T cells, we crossed NOD-IGRP mice to highly diabetogenic IGRP206-214 T-cell receptor transgenic mice (NOD8.
View Article and Find Full Text PDFObjective: Macrophage secretion of proinflammatory cytokines contributes to the pathogenesis of obesity-related insulin resistance. An important regulator of inflammation is the suppressor of cytokine signaling-1 (SOCS1), which inhibits the JAK-STAT and toll-like receptor-4 (TLR4) pathways. Despite the reported role of SOCS1 in inhibiting insulin signaling, it is surprising that a SOCS1 polymorphism that increases SOCS1 promoter activity is associated with enhanced insulin sensitivity despite obesity.
View Article and Find Full Text PDFType 1 diabetes is caused by death of insulin-producing pancreatic beta cells. Beta-cell apoptosis induced by FasL may be important in type 1 diabetes in humans and in the non-obese diabetic (NOD) mouse model. Deficiency of the pro-apoptotic BH3-only molecule Bid protects beta cells from FasL-induced apoptosis in vitro.
View Article and Find Full Text PDFCytotoxic T lymphocytes (CTLs) that cause type 1 diabetes are activated in draining lymph nodes and become concentrated as fully active CTLs in inflamed pancreatic islets. It is unclear whether CTL function is driven by signals received in the lymph node or also in the inflamed tissue. We studied whether the development of cytotoxicity requires further activation in islets.
View Article and Find Full Text PDFUnlabelled: Obesity is associated with chronic inflammation and contributes to the development of insulin resistance and nonalcoholic fatty liver disease. The suppressor of cytokine signaling-3 (SOCS3) protein is increased in inflammation and is thought to contribute to the pathogenesis of insulin resistance by inhibiting insulin and leptin signaling. Therefore, we studied the metabolic effects of liver-specific SOCS3 deletion in vivo.
View Article and Find Full Text PDF