Publications by authors named "St Elmo Wilken"

Metabolic models are typically characterized by a large number of parameters. Traditionally, metabolic control analysis is applied to differential equation-based models to investigate the sensitivity of predictions to parameters. A corresponding theory for constraint-based models is lacking, due to their formulation as optimization problems.

View Article and Find Full Text PDF

Summary: COBREXA.jl is a Julia package for scalable, high-performance constraint-based reconstruction and analysis of very large-scale biological models. Its primary purpose is to facilitate the integration of modern high performance computing environments with the processing and analysis of large-scale metabolic models of challenging complexity.

View Article and Find Full Text PDF

The application of thermodynamics to microbial growth has a long tradition that originated in the middle of the 20th century. This approach reflects the view that self-replication is a thermodynamic process that is not fundamentally different from mechanical thermodynamics. The key distinction is that a free energy gradient is not converted into mechanical (or any other form of) energy but rather into new biomass.

View Article and Find Full Text PDF

Anaerobic gut fungi in the phylum Neocallimastigomycota typically inhabit the digestive tracts of large mammalian herbivores, where they play an integral role in the decomposition of raw lignocellulose into its constitutive sugar monomers. However, quantitative tools to study their physiology are lacking, partially due to their complex and unresolved metabolism that includes the largely uncharacterized fungal hydrogenosome. Modern omics approaches combined with metabolic modeling can be used to establish an understanding of gut fungal metabolism and develop targeted engineering strategies to harness their degradation capabilities for lignocellulosic bioprocessing.

View Article and Find Full Text PDF

The herbivore digestive tract is home to a complex community of anaerobic microbes that work together to break down lignocellulose. These microbiota are an untapped resource of strains, pathways and enzymes that could be applied to convert plant waste into sugar substrates for green biotechnology. We carried out more than 400 parallel enrichment experiments from goat faeces to determine how substrate and antibiotic selection influence membership, activity, stability and chemical productivity of herbivore gut communities.

View Article and Find Full Text PDF

Anaerobic fungi (Neocallimastigomycota) are emerging non-model hosts for biotechnology due to their wealth of biomass-degrading enzymes, yet tools to engineer these fungi have not yet been established. Here, we show that the anaerobic gut fungi have the most GC depleted genomes among 443 sequenced organisms in the fungal kingdom, which has ramifications for heterologous expression of genes as well as for emerging CRISPR-based genome engineering approaches. Comparative genomic analyses suggest that anaerobic fungi may contain cellular machinery to aid in sexual reproduction, yet a complete mating pathway was not identified.

View Article and Find Full Text PDF

Consortium-based approaches are a promising avenue toward efficient bioprocessing. However, many complex microbial interactions dictate community dynamics and stability that must be replicated in synthetic systems. The rumen and/or hindguts of large mammalian herbivores harbor complex communities of biomass-degrading fungi and bacteria, as well as archaea and protozoa that work collectively to degrade lignocellulose, yet the microbial interactions responsible for stability, resilience, and activity of the community remain largely uncharacterized.

View Article and Find Full Text PDF
Article Synopsis
  • * Using a mixture of different microbes, particularly anaerobic fungi and domesticated microbes, can effectively distribute the work needed for better product yields and diversity.
  • * Anaerobic fungi release sugars from biomass, which can be utilized by engineered microbes like Saccharomyces cerevisiae to produce valuable chemicals, while also leaving other sugars available for additional microbial pathways.
View Article and Find Full Text PDF

A wealth of fungal enzymes has been identified from nature, which continue to drive strain engineering and bioprocessing for a range of industries. However, while a number of clades have been investigated, the vast majority of the fungal kingdom remains unexplored for industrial applications. Here, we discuss selected classes of fungal enzymes that are currently in biotechnological use, and explore more basal, non-conventional fungi and their underexploited biomass-degrading mechanisms as promising agents in the transition towards a bio-based society.

View Article and Find Full Text PDF