Publications by authors named "Ssu-Kuan Wu"

Integrating two-dimensional (2D) layered materials with wide bandgap β-GaO has unveiled impressive opportunities for exploring novel physics and device concepts. This study presents the epitaxial growth of 2D β-InSe/3D β-GaO heterostructures on c-Sapphire substrates by plasma-assisted molecular beam epitaxy. Firstly, we employed a temperature-dependent two-step growth process to deposit GaO and obtained a phase-pure β-GaO film on c-Sapphire.

View Article and Find Full Text PDF

The nanotribological properties of aluminum gallium nitride (AlGaN) epitaxial films grown on low-temperature-grown GaN/AlN/Si substrates were investigated using a nanoscratch system. It was confirmed that the Al compositions played an important role, which was directly influencing the strength of the bonding forces and the shear resistance. It was verified that the measured friction coefficient (μ) values of the AlGaN films from the Al compositions (where x = 0.

View Article and Find Full Text PDF

Single-phase two-dimensional (2D) indium monoselenide (γ-InSe) film is successfully grown via solid phase epitaxy in the molecular beam epitaxy (MBE) system. Having high electron mobility and high photoresponsivity, ultrathin 2D γ-InSe semiconductors are attractive for future field-effect transistor and optoelectronic devices. However, growing single-phase γ-InSe film is a challenge due to the polymorphic nature of indium selenide (γ-InSe, α-InSe, β-InSe, γ-InSe, etc.

View Article and Find Full Text PDF

The high electron mobility transistor (HEMT) structures on Si (111) substrates were fabricated with heavily Fe-doped GaN buffer layers by metalorganic chemical vapor deposition (MOCVD). The heavy Fe concentrations employed for the purpose of highly insulating buffer resulted in Fe segregation and 3D island growth, which played the role of a nano-mask. The in situ reflectance measurements revealed a transition from 2D to 3D growth mode during the growth of a heavily Fe-doped GaN:Fe layer.

View Article and Find Full Text PDF

Hydrostatically pressurized studies using diamond anvil cells on the structural phase transition of the free-standing screw-dislocation-driven (SDD) GaSe thin film synthesized by molecular beam epitaxy have been demonstrated via in-situ angle-dispersive synchrotron X-ray diffraction and Raman spectroscopy. The early pressure-driven hexagonal-to-rock salt transition at approximately ~ 20 GPa as well as the outstandingly structural-phase memory after depressurization in the SDD-GaSe film was recognized, attributed to the screw dislocation-assisted mechanism. Note that, the reversible pressure-induced structural transition was not evidenced from the GaSe bulk, which has a layer-by-layer stacking structure.

View Article and Find Full Text PDF
Article Synopsis
  • * Hall measurements indicated that the best activation efficiency of 2.22% occurred at a Mg flow rate of 450 sccm, with no decrease in hole concentration due to structural stress.
  • * The incorporation of an AlN interlayer improved activation rates after saturation and reduced Mg atom diffusion, resulting in a high hole concentration of about 1.3 × 10^10 cm² in the p-GaN/AlN-IL/AlGaN structure.
View Article and Find Full Text PDF

Two-dimensional (2D) layered GaSe films were grown on GaAs (001), GaN/Sapphire, and Mica substrates by molecular beam epitaxy (MBE). The in situ reflective high-energy electron diffraction monitoring reveals randomly in-plane orientations of nucleated GaSe layers grown on hexagonal GaN/Sapphire and Mica substrates, whereas single-orientation GaSe domain is predominant in the GaSe/GaAs (001) sample. Strong red-shifts in the frequency of in-plane [Formula: see text] vibration modes and bound exciton emissions observed from Raman scattering and photoluminescence spectra in all samples are attributed to the unintentionally biaxial in-plane tensile strains, induced by the dissimilarity of symmetrical surface structure between the 2D-GaSe layers and the substrates during the epitaxial growth.

View Article and Find Full Text PDF

Regardless of the dissimilarity in the crystal symmetry, the two-dimensional GaSe materials grown on GaAs(001) substrates by molecular beam epitaxy reveal a screw-dislocation-driven growth mechanism. The spiral-pyramidal structure of GaSe multi-layers was typically observed with the majority in ε-phase. Comprehensive investigations on temperature-dependent photoluminescence, Raman scattering, and X-ray diffraction indicated that the structure has been suffered an amount of strain, resulted from the screw-dislocation-driven growth mechanism as well as the stacking disorders between monolayer at the boundaries of the GaSe nanoflakes.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessioncs60gb0uno2rsk07hvimhjcmdcjqbvsv): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once