Publications by authors named "Ssang-Taek Lim"

Atherosclerosis develops at predictable sites in the vasculature where branch points and curvatures create non-laminar disturbed flow. This disturbed flow causes vascular inflammation by increased endothelial cell (EC) barrier permeability and the expression of inflammatory genes such as vascular cell adhesion molecule-1 (VCAM-1). Vascular endothelial growth factor receptor 2 (VEGFR2) is important for flow-induced EC inflammation; however, there are still some gaps in the signaling pathway.

View Article and Find Full Text PDF

Epigenetic silencing of tumor suppressor genes is one of the main drivers of tumor progression. Without these tumor suppressors to reduce proliferation, tumor cells proliferate unchecked. Focal adhesion kinase (FAK) is a tyrosine kinase which is often upregulated in various tumors and promotes cell proliferation and migration.

View Article and Find Full Text PDF

Background: In breast cancer, ErbB receptors play a critical role, and overcoming drug resistance remains a major challenge in the clinic. However, intricate regulatory mechanisms of ErbB family genes are poorly understood. Here, we demonstrate SON as an ErbB-regulatory splicing factor and a novel therapeutic target for ErbB-positive breast cancer.

View Article and Find Full Text PDF

Rare diseases are underrepresented in biomedical research, leading to insufficient awareness. Zhu-Tokita-Takenouchi-Kim (ZTTK) syndrome is a rare disease caused by genetic alterations that result in heterozygous loss of function of SON. While patients with ZTTK syndrome live with numerous symptoms, the lack of model organisms hampers our understanding of SON and this complex syndrome.

View Article and Find Full Text PDF

Rare diseases are underrepresented in biomedical research, leading to insufficient awareness. Zhu-Tokita-Takenouchi-Kim (ZTTK) syndrome is a rare disease caused by genetic alterations that result in heterozygous loss-of-function of SON. While ZTTK syndrome patients suffer from numerous symptoms, the lack of model organisms hamper our understanding of both SON and this complex syndrome.

View Article and Find Full Text PDF

Background And Aims: Hyperlipidemia leads to the accumulation of oxidized low-density lipoprotein (oxLDL) within the vessel wall where it causes chronic inflammation in endothelial cells (ECs) and drives atherosclerotic lesions. Although focal adhesion kinase (FAK) is critical in proinflammatory NF-κB activation in ECs, it is unknown if hyperlipidemia alters FAK-mediated NF-κB activity in vivo to affect atherosclerosis progression.

Methods: We investigated changes in EC FAK and NF-κB activation using Apoe mice fed a western diet (WD).

View Article and Find Full Text PDF

In this study, changes in cell signaling mechanisms in skin cells induced by various wavelengths and intensities of light-emitting diodes (LED) were investigated, focusing on the activity of focal adhesion kinase (FAK) in particular. We examined the effect of LED irradiation on cell survival, the generation of intracellular reactive oxygen species (ROS), and the activity of various cell-signaling proteins. Red LED light increased cell viability at all intensities, whereas strong green and blue LED light reduced cell viability, and this effect was reversed by NAC or DPI treatment.

View Article and Find Full Text PDF

Dysregulation of cyclin-dependent kinases (CDKs) can promote unchecked cell proliferation and cancer progression. Although focal adhesion kinase (FAK) contributes to regulating cell cycle progression, the exact molecular mechanism remains unclear. Here, we found that FAK plays a key role in cell cycle progression potentially through regulation of CDK4/6 protein expression.

View Article and Find Full Text PDF

Patients who recover from nosocomial pneumonia oftentimes exhibit long-lasting cognitive impairment comparable with what is observed in Alzheimer's disease patients. We previously hypothesized that the lung endothelium contributes to infection-related neurocognitive dysfunction, because bacteria-exposed endothelial cells release a form(s) of cytotoxic tau that is sufficient to impair long-term potentiation in the hippocampus. However, the full-length lung and endothelial tau isoform(s) have yet to be resolved and it remains unclear whether the infection-induced endothelial cytotoxic tau triggers neuronal tau aggregation.

View Article and Find Full Text PDF

Rationale: Vascular smooth muscle cells (SMCs) exhibit remarkable plasticity and can undergo dedifferentiation upon pathological stimuli associated with disease and interventions.

Objective: Although epigenetic changes are critical in SMC phenotype switching, a fundamental regulator that governs the epigenetic machineries regulating the fate of SMC phenotype has not been elucidated.

Methods And Results: Using SMCs, mouse models, and human atherosclerosis specimens, we found that FAK (focal adhesion kinase) activation elicits SMC dedifferentiation by stabilizing DNMT3A (DNA methyltransferase 3A).

View Article and Find Full Text PDF

The multifunctional glycoprotein fibronectin influences several crucial cellular processes and contributes to multiple pathologies. While a link exists between fibronectin-associated pathologies and the receptor tyrosine kinase EphA2, the mechanism by which EphA2 promotes fibronectin matrix remodeling remains unknown. We previously demonstrated that EphA2 deletion reduces smooth muscle fibronectin deposition and blunts fibronectin deposition in atherosclerosis without influencing fibronectin expression.

View Article and Find Full Text PDF

Aims: Vascular smooth muscle cells (VSMCs) normally exhibit a very low proliferative rate. Vessel injury triggers VSMC proliferation, in part, through focal adhesion kinase (FAK) activation, which increases transcription of cyclin D1, a key activator for cell cycle-dependent kinases (CDKs). At the same time, we also observe that FAK regulates the expression of the CDK inhibitors (CDKIs) p27 and p21.

View Article and Find Full Text PDF

While sustained nuclear factor-κB (NF-κB) activation is critical for proinflammatory molecule expression, regulators of NF-κB activity during chronic inflammation are not known. We investigated the role of focal adhesion kinase (FAK) on sustained NF-κB activation in tumor necrosis factor-α (TNF-α)-stimulated endothelial cells (ECs) both in vitro and in vivo. We found that FAK inhibition abolished TNF-α-mediated sustained NF-κB activity in ECs by disrupting formation of TNF-α receptor complex-I (TNFRC-I).

View Article and Find Full Text PDF

A high incidence of acute megakaryoblastic leukemia (AMKL) in Down syndrome patients implies that chromosome 21 genes have a pivotal role in AMKL development, but the functional contribution of individual genes remains elusive. Here, we report that SON, a chromosome 21-encoded DNA- and RNA-binding protein, inhibits megakaryocytic differentiation by suppressing RUNX1 and the megakaryocytic gene expression program. As megakaryocytic progenitors differentiate, SON expression is drastically reduced, with mature megakaryocytes having the lowest levels.

View Article and Find Full Text PDF

Focal adhesion kinase (FAK) is an integrin-associated protein tyrosine kinase that is frequently overexpressed in advanced human cancers. Recent studies have demonstrated that aside from FAK's catalytic activity in cancer cells, its cellular localization is also critical for regulating the transcription of chemokines that promote a favorable tumor microenvironment (TME) by suppressing destructive host immunity. In addition to the protumor roles of FAK in cancer cells, FAK activity within cells of the TME may also support tumor growth and metastasis through various mechanisms, including increased angiogenesis and vascular permeability and effects related to fibrosis in the stroma.

View Article and Find Full Text PDF

In various vascular diseases, extracellular matrix (ECM) and integrin expression are frequently altered, leading to focal adhesion kinase (FAK) or proline-rich tyrosine kinase 2 (Pyk2) activation. In addition to the major roles of FAK and Pyk2 in regulating adhesion dynamics via integrins, recent studies have shown a new role for nuclear FAK in gene regulation in various vascular cells. In particular, FAK primarily localizes within the nuclei of vascular smooth muscle cells (VSMCs) of healthy arteries.

View Article and Find Full Text PDF

Chemiluminescence (CL) is one of the most useful methods for detecting reactive oxygen species (ROS). Although fluorescence dyes or genetically encoded biosensors have been developed, CL is still used due to its high sensitivity, ease of use, and low cost. While initially established and used to measure high levels of ROS in phagocytic cells, CL assays are not ideal for measuring low levels of ROS.

View Article and Find Full Text PDF

Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a long noncoding RNA overexpressed in various cancers that promotes cell growth and metastasis. Although hypoxia has been shown to up-regulate MALAT1, only hypoxia-inducible factors (HIFs) have been implicated in activation of the promoter in specific cell types and other molecular mechanisms associated with hypoxia-mediated MALAT1 up-regulation remain largely unknown. Here, we demonstrate that hypoxia induces cancer cell-specific chromatin-chromatin interactions between newly identified enhancer-like -regulatory elements present at the locus.

View Article and Find Full Text PDF

Protein tyrosine kinase (PTK) activity has been implicated in pro-inflammatory gene expression following tumor necrosis factor-α (TNF-α) or interkeukin-1β (IL-1β) stimulation. However, the identity of responsible PTK(s) in cytokine signaling have not been elucidated. To evaluate which PTK is critical to promote the cytokine-induced inflammatory cell adhesion molecule (CAM) expression including VCAM-1, ICAM-1, and E-selectin in human aortic endothelial cells (HAoECs), we have tested pharmacological inhibitors of major PTKs: Src and the focal adhesion kinase (FAK) family kinases - FAK and proline-rich tyrosine kinase (Pyk2).

View Article and Find Full Text PDF

Rationale: Neointimal hyperplasia is characterized by excessive accumulation of vascular smooth muscle cells (SMCs) leading to occlusive disorders, such as atherosclerosis and stenosis. Blood vessel injury increases growth factor secretion and matrix synthesis, which promotes SMC proliferation and neointimal hyperplasia via FAK (focal adhesion kinase).

Objective: To understand the mechanism of FAK action in SMC proliferation and neointimal hyperplasia.

View Article and Find Full Text PDF

Although genetic testing is increasingly used in clinical nephrology, a large number of patients with congenital abnormalities of the kidney and urinary tract (CAKUT) remain undiagnosed with current gene panels. Therefore, careful curation of novel genetic findings is key to improving diagnostic yields. We recently described a novel intellectual disability syndrome caused by de novo heterozygous loss-of-function mutations in the gene encoding the splicing factor SON.

View Article and Find Full Text PDF

Malignant melanoma typically metastasizes to lymph nodes (LNs) as a primary or in-transit lesion before secondary metastasis occurs, and LN biopsy is a common procedure to diagnose melanoma progression. Since cancer metastasis is a complex process where various interactions between tumor cells and the stroma play key roles in establishing metastatic lesions, the exact mechanisms underlying melanoma metastasis to LNs remains unknown. It has been known that focal adhesion kinase (FAK) activity promotes the expression of proinflammatory vascular cell adhesion molecule-1 (VCAM-1).

View Article and Find Full Text PDF

The overall understanding of the molecular etiologies of intellectual disability (ID) and developmental delay (DD) is increasing as next-generation sequencing technologies identify genetic variants in individuals with such disorders. However, detailed analyses conclusively confirming these variants, as well as the underlying molecular mechanisms explaining the diseases, are often lacking. Here, we report on an ID syndrome caused by de novo heterozygous loss-of-function (LoF) mutations in SON.

View Article and Find Full Text PDF

The mitochondria are double membrane-bound organelles found in most eukaryotic cells. They generate most of the cell's energy supply of adenosine triphosphate (ATP). Protein phosphorylation and dephosphorylation are critical mechanisms in the regulation of cell signaling networks and are essential for almost all the cellular functions.

View Article and Find Full Text PDF

Dysregulation of MLL complex-mediated histone methylation plays a pivotal role in gene expression associated with diseases, but little is known about cellular factors modulating MLL complex activity. Here, we report that SON, previously known as an RNA splicing factor, controls MLL complex-mediated transcriptional initiation. SON binds to DNA near transcription start sites, interacts with menin, and inhibits MLL complex assembly, resulting in decreased H3K4me3 and transcriptional repression.

View Article and Find Full Text PDF