Publications by authors named "Sruti Chattopadhyay"

We report a novel Fluorescence Resonance Energy Transfer (FRET) immunosensor for sensitive detection of whole cell H. pylori, a causative organism for gastric carcinoma. Highly fluorescent and well-dispersed functionalized carbon dots (FCDs) were synthesized and chemically conjugated with anti-H.

View Article and Find Full Text PDF

The quest for detecting bacteria has gained momentum in food and beverage industry for preventing spoilage of products to maintain requisite quality. The present paper describes the development of a SERS immunosensor for the detection of model pathogen, S. typhimurium using strategically synthesized functionalized polymeric magnetic nanoparticles (FPMNPs) as effective capture probe and immunomagnetic separator.

View Article and Find Full Text PDF

Rapid detection and enumeration of pathogens is essential for monitoring contamination and spoilage of food products to ensure improved quality control management. Functionalized polymeric magnetic nanoconstructs (FPMNCs) were developed as an effective immunomagnetic separator and sensing platform for the selective capturing of Salmonella typhimurium. Novel FPMNCs were prepared in three stages involving synthesis of iron oxide (IO) dispersion, capping with sodium oleate and encapsulation of preformed IO nanoparticles by in-situ free radical emulsion polymerization of styrene (St), methyl methacrylate (MMA) and acetoacetoxy ethylmethacrylate (AAEM).

View Article and Find Full Text PDF

Water treatment to mitigate microbial contaminants is a major challenge across globe paving the way to develop novel antimicrobial compounds. We aim at architecting antibacterial moiety eventually catering to vast water treatment industry. In this research study, quaternary ammonium functionalized polyamidoamine (PAMAM) dendrimer and PAMAM-ethyleneglycol dimethacrylate (EGDMA) dendritic polymer network were synthesized.

View Article and Find Full Text PDF

The use of novel antimicrobial molecules in bone cement can improve efficiency of recuperation after arthroplasty or joint replacement surgeries, avoiding the risks associated with antibiotic resistant antimicrobial agents. Nanomaterials particularly dendrimers are particularly useful for making broad spectrum killing agents owing to their large surface areas and functionalities. Therefore, we have synthesized generation 1 quaternary ammonium dendrimer of tripropylene glycol diacrylate (TPGDA) using octyl iodide (OI) [TPGDA G1.

View Article and Find Full Text PDF

Novel, size controlled fluorescent polymeric nanoparticles (FPNP) were synthesized having acetoacetoxy functionality on the surface for immobilization of biomolecules which can be utilized as biomarkers and labels in fluoroimmunoassays. Core-shell nanoparticles of poly(styrene, St-methyl methacrylate, MMA-acetoacetoxy ethyl methacrylate, AAEM), stabilized by various concentrations of surfactant, sodium lauryl sulphate (SLS), were obtained by facile miniemulsion co-polymerization encapsulated with pyrene molecules in their hydrophobic core. Analytical, spectroscopic and imaging characterization techniques revealed the formation of stable, monodisperse, spherical nano sized particles exhibiting high luminescence properties.

View Article and Find Full Text PDF

Sensitive and rapid detection of Salmonella is a key to the prevention and identification of problems associated with human health and safety. Enzyme Linked Immunosorbent Assays (ELISAs) are popular and widely implemented technique to detect pathogenic bacteria in routine analysis but a typical ELISA yields a sensitivity of 10(6)-10(7)cfu/mL. The present study consecrates on the applicability of surface modified polyacrylonitrile (PAN) fibers as a novel matrix of immunoassay for the detection of Salmonella typhimurium in a sandwich ELISA format.

View Article and Find Full Text PDF

The identification of pathogenic bacteria in water is important for addressing preventive and treatment issues regarding health and safety. A highly sensitive and specific solid-phase sandwich ELISA procedure was developed for the detection of typhoid causing extremely lethal water borne pathogen Salmonella typhi (S. typhi) on modified isopore polycarbonate (PC) black membranes.

View Article and Find Full Text PDF

Accurate determination of concentration of immunoglobulin (IgG) to tetanus toxoid is important in order to evaluate the immunogenicity of tetanus toxoid vaccines, immune competence in individual patients and to measure the prevalence of immunity in populations. Surface modified polyacrylonitrile (PAN) fibers were evaluated as a matrix to develop highly sensitive method for the detection of anti-tetanus antibody in a sandwich ELISA format. In the proposed method tetanus toxoid immobilized on modified PAN fibers was used to detect anti-tetanus antibody (raised in horse hence represented as horse anti-tetanus toxoid or HAT-Ab) with horse raddish peroxidase enzyme conjugated with Rabbit anti-Horse IgG (RAH-HRP) as the label within 2.

View Article and Find Full Text PDF

Pendent nitrile groups of multifilamentous polyacrylonitrile (PAN) fibers were reduced to amino groups using lithium aluminum hydride for different time of reduction and amine content was estimated by performing acid-base titrations. Attenuated total reflection-fourier transform infrared spectroscopy (ATR-FTIR) and Differential Scanning Calorimetry (DSC) were used for the characterization of the generated amino groups and thermal properties of the reduced fibers, respectively. The surface morphology of the fibers after reduction and immobilization was characterized using Scanning Electron Microscope (SEM).

View Article and Find Full Text PDF