IEEE/ACM Trans Comput Biol Bioinform
January 2022
Gene Regulatory Network (GRN) is formed due to mutual transcriptional regulation within a set of protein coding genes in cellular context of an organism. Computational inference of GRN is important to understand the behavior of each gene in terms of change in its protein production rate (expression level). As Recurrent Neural Network (RNN) is efficient in GRN modeling, a bi-objective RNN formulation has been applied here.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
July 2019
Gene Regulatory Network (GRN) is a virtual network in a cellular context of an organism, comprising a set of genes and their internal relationships to regulate protein production rate (gene expression level) of each other through coded proteins. Computational Reconstruction of GRN from gene expression data is a widely-applied research area. Recurrent Neural Network (RNN) is a useful modeling scheme for GRN reconstruction.
View Article and Find Full Text PDFIdentifying a small subset of disease critical genes out of a large size of microarray gene expression data is a challenge in computational life sciences. This paper has applied four meta-heuristic algorithms, namely, honey bee mating optimization (HBMO), harmony search (HS), differential evolution (DE) and genetic algorithm (basic version GA) to find disease critical genes of preeclampsia which affects women during gestation. Two hybrid algorithms, namely, HBMO-kNN and HS-kNN have been newly proposed here where kNN (k nearest neighbor classifier) is used for sample classification.
View Article and Find Full Text PDFGene regulatory network (GRN) is produced as a result of regulatory interactions between different genes through their coded proteins in cellular context. Having immense importance in disease detection and drug finding, GRN has been modelled through various mathematical and computational schemes and reported in survey articles. Neural and neuro-fuzzy models have been the focus of attraction in bioinformatics.
View Article and Find Full Text PDF