Publications by authors named "Srivathsa Pasumarthi"

Multi-contrast magnetic resonance imaging (MRI) is widely used in clinical practice as each contrast provides complementary information. However, the availability of each imaging contrast may vary amongst patients, which poses challenges to radiologists and automated image analysis algorithms. A general approach for tackling this problem is missing data imputation, which aims to synthesize the missing contrasts from existing ones.

View Article and Find Full Text PDF

Purpose: With rising safety concerns over the use of gadolinium-based contrast agents (GBCAs) in contrast-enhanced MRI, there is a need for dose reduction while maintaining diagnostic capability. This work proposes comprehensive technical solutions for a deep learning (DL) model that predicts contrast-enhanced images of the brain with approximately 10% of the standard dose, across different sites and scanners.

Methods: The proposed DL model consists of a set of methods that improve the model robustness and generalizability.

View Article and Find Full Text PDF