The striatum is a major site of learning and memory formation for sensorimotor and cognitive association. One of the mechanisms used by the brain for memory storage is synaptic plasticity - the long-lasting, activity-dependent change in synaptic strength. All forms of synaptic plasticity require an elevation in intracellular calcium, and a common hypothesis is that the amplitude and duration of calcium transients can determine the direction of synaptic plasticity.
View Article and Find Full Text PDFOscillations in the β-band (8-30 Hz) that emerge in the output nuclei of the basal ganglia during Parkinson's disease, along with an imbalanced activation of the direct and indirect pathways, have been linked to the hypokinetic motor output associated with the disease. Although dopamine depletion causes a change in cellular and network properties in the striatum, it is unclear whether abnormal activity measured in the globus pallidus and substantia nigra pars reticulata is caused by abnormal striatal activity. Here we use a computational network model of medium spiny neurons (MSNs)-fast-spiking interneurons (FSIs), based on data from several mammalian species, and find that robust β-band oscillations and imbalanced firing emerge from implementation of changes to cellular and circuit properties caused by dopamine depletion.
View Article and Find Full Text PDFThe inhibitory circuits of the striatum are known to be critical for motor function, yet their contributions to Parkinsonian motor deficits are not clear. Altered firing in the globus pallidus suggests that striatal medium spiny neurons (MSN) of the direct (D1 MSN) and indirect pathway (D2 MSN) are imbalanced during dopamine depletion. Both MSN classes receive inhibitory input from each other and from inhibitory interneurons within the striatum, specifically the fast-spiking interneurons (FSI).
View Article and Find Full Text PDF