Publications by authors named "Sriram Kumar P"

In clinical and scientific research on emotion recognition using physiological signals, selecting the appropriate segment is of utmost importance for enhanced results. In our study, we optimized the electrodermal activity (EDA) segment for an emotion recognition system. Initially, we obtained EDA signals from two publicly available datasets: the Continuously annotated signals of emotion (CASE) and Wearable stress and affect detection (WESAD) for 4-class dimensional and three-class categorical emotional classification, respectively.

View Article and Find Full Text PDF

In this study, we analyzed the utility of electromyogram (EMG) signals recorded from the zygomaticus major (zEMG), the trapezius (tEMG), and the corrugator supercilii (cEMG) for emotion detection. We computed eleven-time domain features from the EMG signals to classify the emotions such as amusing, boring, relaxing, and scary. The features were fed to the logistic regression, support vector machine, and multilayer perceptron classifiers, and model performance was evaluated.

View Article and Find Full Text PDF

In this study, a new method for detecting emotions using Blood Volume Pulse (BVP) signals and machine learning was presented. The BVP of 30 subjects from the publicly available CASE dataset was pre-processed, and 39 features were extracted from various emotional states, such as amusing, boring, relaxing, and scary. The features were categorized into time, frequency, and time-frequency domains and used to build an emotion detection model with XGBoost.

View Article and Find Full Text PDF

In this study, we attempted to classify categorical emotional states using Electrodermal Activity (EDA) signals and a configurable Convolutional Neural Network (cCNN). The EDA signals from the publicly available, Continuously Annotated Signals of Emotion dataset were down-sampled and decomposed into phasic components using the cvxEDA algorithm. The phasic component of EDA was subjected to Short-Time Fourier Transform-based time-frequency representation to obtain spectrograms.

View Article and Find Full Text PDF

Electrodermal activity (EDA) reflects sympathetic nervous system activity through sweating-related changes in skin conductance. Decomposition analysis is used to deconvolve the EDA into slow and fast varying tonic and phasic activity, respectively. In this study, we used machine learning models to compare the performance of two EDA decomposition algorithms to detect emotions such as amusing, boring, relaxing, and scary.

View Article and Find Full Text PDF